咨询与建议

限定检索结果

文献类型

  • 31 篇 期刊文献
  • 29 篇 会议

馆藏范围

  • 60 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 55 篇 工学
    • 25 篇 电气工程
    • 22 篇 计算机科学与技术...
    • 19 篇 控制科学与工程
    • 5 篇 信息与通信工程
    • 5 篇 软件工程
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 仪器科学与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 测绘科学与技术
    • 1 篇 生物医学工程(可授...
  • 13 篇 理学
    • 9 篇 数学
    • 6 篇 物理学
    • 3 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 3 篇 医学
    • 3 篇 临床医学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 60 篇 logarithmic quan...
  • 6 篇 consensus
  • 4 篇 deep learning
  • 3 篇 networked contro...
  • 3 篇 digital watermar...
  • 3 篇 convex optimizat...
  • 3 篇 asymptotic stabi...
  • 3 篇 convolutional ne...
  • 3 篇 digraph
  • 2 篇 digital filters ...
  • 2 篇 speckle
  • 2 篇 embedded vision ...
  • 2 篇 synthetic apertu...
  • 2 篇 generalized gaus...
  • 2 篇 large-scale netw...
  • 2 篇 dynamic vision s...
  • 2 篇 finite-time faul...
  • 2 篇 markov channel a...
  • 2 篇 differential pul...
  • 2 篇 rational laplaci...

机构

  • 3 篇 harbin univ sci ...
  • 3 篇 shandong univ sc...
  • 2 篇 harbin univ sci ...
  • 2 篇 school of electr...
  • 2 篇 tokyo univ agr &...
  • 2 篇 southeast univ s...
  • 2 篇 anhui univ sci &...
  • 2 篇 school of scienc...
  • 2 篇 tokyo univ agr &...
  • 2 篇 beatcraft inc
  • 2 篇 natl univ def te...
  • 2 篇 brunel univ lond...
  • 2 篇 univ jinan sch e...
  • 1 篇 hubei key labora...
  • 1 篇 univ waterloo wa...
  • 1 篇 seoul natl univ ...
  • 1 篇 agh univ krakow ...
  • 1 篇 southwest jiaoto...
  • 1 篇 chungbuk natl un...
  • 1 篇 electrical engin...

作者

  • 3 篇 wang zidong
  • 2 篇 li dequan
  • 2 篇 kim hyun
  • 2 篇 cai jingyong
  • 2 篇 sim hyeonuk
  • 2 篇 choi dahun
  • 2 篇 baronti s
  • 2 篇 hu jun
  • 2 篇 alparone l
  • 2 篇 przewlocka-rus d...
  • 2 篇 choi jooyeon
  • 2 篇 ahadi seyed moha...
  • 2 篇 takemoto masashi
  • 2 篇 xiju zong
  • 2 篇 xingong cheng
  • 2 篇 lee sugil
  • 2 篇 nakajo hironori
  • 2 篇 aiazzi b
  • 2 篇 cheng xingong
  • 2 篇 kalantari nima k...

语言

  • 59 篇 英文
  • 1 篇 其他
检索条件"主题词=Logarithmic quantization"
60 条 记 录,以下是11-20 订阅
排序:
Tracking performance limitations of networked control systems with packet dropouts and logarithmic quantization  41
Tracking performance limitations of networked control system...
收藏 引用
第41届中国控制会议
作者: Jianhao Li Xiaowei Jiang Hao Chen Shaoying Wang Xianhe Zhang School of Automation China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation of Complex Systems Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System College of Science Binzhou University School of Electrical Engineering and Automation Hubei Normal University
In this paper,we focus on the tracking performance(TP) limitations of networked control systems(NCS s).The control system considered is a multi-input and multi-output(MIMO) discrete-time network control system with ti... 详细信息
来源: 评论
Jumping Shift: A logarithmic quantization Method for Low-Power CNN Acceleration
Jumping Shift: A Logarithmic Quantization Method for Low-Pow...
收藏 引用
Design, Automation and Test in Europe Conference and Exhibition (DATE)
作者: Jiang, Longxing Aledo, David Van Leuken, Rene Delft Univ Technol Circuits & Syst Grp Delft Netherlands
logarithmic quantization for Convolutional Neural Networks (CNN): a) fits well typical weights and activation distributions, and b) allows the replacement of the multiplication operation by a shift operation that can ... 详细信息
来源: 评论
RATIONAL DITHER MODULATION USING logarithmic quantization WITH OPTIMUM PARAMETER
RATIONAL DITHER MODULATION USING LOGARITHMIC QUANTIZATION WI...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing
作者: Nima Khademi Kalantari Seyed Mohammad Ahadi Electrical Engineering Department Amirkabir University of Technology 424 Hafez Avenue Tehran 15914 Iran
In this paper, a new logarithmic quantization for Rational Dither Modulation (RDM) is presented. It can be shown that the mu-law function produces quantization levels which are in best accordance with the noise charac... 详细信息
来源: 评论
Asymptotic Stabilization for Uncertain Nonlinear Systems With Input quantization
收藏 引用
IET CONTROL THEORY AND APPLICATIONS 2025年 第1期19卷
作者: Yan, Fei Wang, Shuo Gu, Guoxiang Southwest Jiaotong Univ Sch Informat Sci & Technol Chengdu Peoples R China Louisiana State Univ Sch Elect Engn & Comp Sci Baton Rouge LA 70803 USA
This paper investigates the problem of asymptotic stabilization for a class of uncertain nonlinear systems involving logarithmic quantization at the system input. Different from the existing results and approaches, a ... 详细信息
来源: 评论
Further Results on the R-R Protocol Based H∞ Estimator for 2-D FMII Systems with R-O Uncertainties
收藏 引用
CIRCUITS SYSTEMS AND SIGNAL PROCESSING 2025年 第4期44卷 2424-2453页
作者: Qobbi, Hicham Zoulagh, Taha Boukili, Bensalem Barbosa, Karina A. Hmamed, Abdelaziz Chaibi, Noreddine Sidi Mohamed Ben Abdellah Univ Fez LISAC Lab Fes Morocco Univ Santiago Santiago Chile Private Univ Fez Fes Morocco
This paper presents an enhanced study on the design of an H-infinity observer based on the Round-Robin protocol for 2-D FMII systems subjected to Randomly-Occurring uncertainties. The Randomly-Occurring uncertainties,... 详细信息
来源: 评论
MXQN:Mixed quantization for reducing bit-width of weights and activations in deep convolutional neural networks
收藏 引用
APPLIED INTELLIGENCE 2021年 第7期51卷 4561-4574页
作者: Huang, Chenglong Liu, Puguang Fang, Liang Natl Univ Def Technol Coll Comp Sci & Technol Changsha 410073 Peoples R China
quantization, which involves bit-width reduction, is considered as one of the most effective approaches to rapidly and energy-efficiently deploy deep convolutional neural networks (DCNNs) on resource-constrained embed... 详细信息
来源: 评论
Non-fragile Suboptimal Set-membership Estimation for Delayed Memristive Neural Networks with quantization via Maximum-error-first Protocol
收藏 引用
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS 2020年 第7期18卷 1904-1914页
作者: Yang, Yu Hu, Jun Chen, Dongyan Wei, Yunliang Du, Junhua Harbin Univ Sci & Technol Dept Math Harbin 150080 Peoples R China Harbin Univ Sci & Technol Heilongjiang Prov Key Lab Optimizat Control & Int Harbin 150080 Peoples R China Univ South Wales Sch Engn Pontypridd CF37 1DL M Glam Wales Qufu Normal Univ Sch Math Sci Qufu 273165 Shandong Peoples R China Qiqihar Univ Coll Sci Qiqihar 161006 Peoples R China
This paper is concerned with the non-fragile protocol-based set-membership estimation problem for a class of discrete memristive neural networks (MNNs) with mixed time-delays, quantization and unknown but bounded nois... 详细信息
来源: 评论
Hybrid-driven H∞ filter design for T-S fuzzy systems with quantization
收藏 引用
NONLINEAR ANALYSIS-HYBRID SYSTEMS 2019年 31卷 135-152页
作者: Liu, Jinliang Wei, Lili Cao, Jie Fei, Shumin Nanjing Univ Finance & Econ Coll Informat Engn Nanjing 210023 Jiangsu Peoples R China Collaborat Innovat Ctr Modern Grain Circulat & Sa Nanjing 210023 Jiangsu Peoples R China Southeast Univ Sch Automat Nanjing 210096 Jiangsu Peoples R China
This paper is mainly concerned with hybrid-driven H-infinity filtering for a class of Takagi-Sugeno (T-S) fuzzy systems with quantization. To reduce the redundancy of transmission data and save the network bandwidth, ... 详细信息
来源: 评论
H state estimation for discrete memristive neural networks with signal quantization and probabilistic time delay
收藏 引用
SYSTEMS SCIENCE & CONTROL ENGINEERING 2021年 第1期9卷 764-774页
作者: Feng, Le Zhao, Liang Ban, Liqun Harbin Univ Sci & Technol Dept Math Harbin Peoples R China Harbin Univ Sci & Technol Heilongjiang Prov Key Lab Optimizat Control & Int Harbin Peoples R China
In this paper, the problem of H-infinity state estimation is discussed for a class of delayed discrete memristive neural networks with signal quantization. A random variable obeying the Bernoulli distribution is used ... 详细信息
来源: 评论
Successive Log quantization for Cost-Efficient Neural Networks Using Stochastic Computing  19
Successive Log Quantization for Cost-Efficient Neural Networ...
收藏 引用
56th ACM/EDAC/IEEE Design Automation Conference (DAC)
作者: Lee, Sugil Sim, Hyeonuk Choi, Jooyeon Lee, Jongeun UNIST Sch Elect & Comp Engn Ulsan South Korea Seoul Natl Univ Neural Proc Res Ctr Seoul South Korea
Despite the multifaceted benefits of stochastic computing (SC) such as low cost, low power, and flexible precision, SC-based deep neural networks (DNNs) still suffer from the long-latency problem, especially for those... 详细信息
来源: 评论