咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14 篇 工学
    • 14 篇 计算机科学与技术...
    • 6 篇 软件工程
    • 3 篇 控制科学与工程
  • 5 篇 理学
    • 5 篇 数学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 14 篇 logic programs w...
  • 10 篇 probabilistic lo...
  • 6 篇 problog
  • 5 篇 statistical rela...
  • 4 篇 distribution sem...
  • 4 篇 probabilistic in...
  • 2 篇 expectation maxi...
  • 2 篇 slg resolution
  • 2 篇 logic programmin...
  • 2 篇 binary decision ...
  • 1 篇 well-founded sem...
  • 1 篇 tool for probabi...
  • 1 篇 prism
  • 1 篇 structure learni...
  • 1 篇 significant subg...
  • 1 篇 most probable ex...
  • 1 篇 well founded sem...
  • 1 篇 statistical sign...
  • 1 篇 causal inference
  • 1 篇 probabilistic lo...

机构

  • 3 篇 univ ferrara dip...
  • 2 篇 univ ferrara end...
  • 2 篇 univ ferrara dip...
  • 1 篇 kuleuven leuven
  • 1 篇 univ ferrara dip...
  • 1 篇 univ ferrara dip...
  • 1 篇 univ ferrara dip...
  • 1 篇 univ bologna dei...
  • 1 篇 univ ferrara dip...
  • 1 篇 natl inst inform...
  • 1 篇 univ ferrara end...
  • 1 篇 univ ferrara end...
  • 1 篇 univ bari aldo m...
  • 1 篇 univ ferrara dip...
  • 1 篇 univ ferrara dep...
  • 1 篇 presto jst

作者

  • 11 篇 riguzzi fabrizio
  • 6 篇 bellodi elena
  • 2 篇 cota giuseppe
  • 2 篇 bragaglia stefan...
  • 2 篇 zese riccardo
  • 1 篇 sugiyama mahito
  • 1 篇 janssens gerda
  • 1 篇 shterionov dimit...
  • 1 篇 lamma evelina
  • 1 篇 renkens joris
  • 1 篇 di mauro nicola
  • 1 篇 satoh ken
  • 1 篇 vlasselaer jonas
  • 1 篇 kimmig angelika
  • 1 篇 meert wannes

语言

  • 12 篇 英文
  • 2 篇 其他
检索条件"主题词=Logic Programs with Annotated Disjunctions"
14 条 记 录,以下是1-10 订阅
排序:
SLGAD Resolution for Inference on logic programs with annotated disjunctions
收藏 引用
FUNDAMENTA INFORMATICAE 2010年 第3-4期102卷 429-466页
作者: Riguzzi, Fabrizio Univ Ferrara ENDIF I-44100 Ferrara Italy
logic programs with annotated disjunctions (LPADs) allow to express probabilistic information in logic programming. The semantics of an LPAD is given in terms of the well-founded models of the normal logic programs ob... 详细信息
来源: 评论
ALLPAD: approximate learning of logic programs with annotated disjunctions
收藏 引用
MACHINE LEARNING 2008年 第2-3期70卷 207-223页
作者: Riguzzi, Fabrizio Univ Ferrara Dipartimento Ingn I-44100 Ferrara Italy
logic programs with annotated disjunctions (LPADs) provide a simple and elegant framework for representing probabilistic knowledge in logic programming. In this paper we consider the problem of learning ground LPADs s... 详细信息
来源: 评论
Approximate Inference for logic programs with annotated disjunctions
收藏 引用
20th International Conference on Inductive logic Programming (ILP)
作者: Bragaglia, Stefano Riguzzi, Fabrizio Univ Ferrara ENDIF Univ Bologna DEIS I-44100 Ferrara Italy
logic programs with annotated disjunctions (LPADs) are a promising language for Probabilistic Inductive logic Programming. In order to develop efficient learning systems for LPADs, it is fundamental to have high-perfo... 详细信息
来源: 评论
The Most Probable Explanation for Probabilistic logic programs with annotated disjunctions  1
收藏 引用
24th International Conference on Inductive logic Programming (ILP)
作者: Shterionov, Dimitar Renkens, Joris Vlasselaer, Jonas Kimmig, Angelika Meert, Wannes Janssens, Gerda KULeuven Leuven Belgium
Probabilistic logic languages, such as ProbLog and CP-logic, are probabilistic generalizations of logic programming that allow one to model probability distributions over complex, structured domains. Their key probabi... 详细信息
来源: 评论
Inference with logic programs with annotated disjunctions under the Well Founded Semantics
Inference with Logic Programs with Annotated Disjunctions un...
收藏 引用
24th International Conference on logic Programming (ICLP)
作者: Riguzzi, Fabrizio Univ Ferrara ENDIF I-44100 Ferrara Italy
logic programs with annotated disjunctions (LPADs) allow to express probabilistic information in logic programming. The semantics of an LPAD is given in terms of well founded models of the normal logic programs obtain... 详细信息
来源: 评论
Reasoning on logic programs with annotated disjunctions
收藏 引用
INTELLIGENZA ARTIFICIALE 2012年 第1期6卷 77-96页
作者: Bragaglia, Stefano Univ Bologna DEIS Viale Risorgimento Bologna Italy
Probabilistic Inductive logic Programming and Statistical Relational Learning are families of techniques that are exploited in Machine Learning applications to perform advanced tasks in several domains. Every day the ... 详细信息
来源: 评论
MCINTYRE: A Monte Carlo System for Probabilistic logic Programming
收藏 引用
FUNDAMENTA INFORMATICAE 2013年 第4期124卷 521-541页
作者: Riguzzi, Fabrizio Univ Ferrara Dipartimento Matemat & Informat I-44122 Ferrara Italy
Probabilistic logic Programming is receiving an increasing attention for its ability to model domains with complex and uncertain relations among entities. In this paper we concentrate on the problem of approximate inf... 详细信息
来源: 评论
Speeding Up Inference for Probabilistic logic programs
收藏 引用
COMPUTER JOURNAL 2014年 第3期57卷 347-363页
作者: Riguzzi, Fabrizio Univ Ferrara Dipartimento Matemat & Informat I-44122 Ferrara Italy
Probabilistic logic Programming (PLP) allows one to represent domains containing many entities connected by uncertain relations and has many applications in particular in Machine Learning. PITA is a PLP algorithm for ... 详细信息
来源: 评论
Summarizing significant subgraphs by probabilistic logic programming
收藏 引用
INTELLIGENT DATA ANALYSIS 2019年 第6期23卷 1299-1312页
作者: Bellodi, Elena Satoh, Ken Sugiyama, Mahito Univ Ferrara Dept Engn Ferrara Italy Natl Inst Informat Tokyo Japan PRESTO JST Tokyo Japan
Although recent advances of significant subgraph mining enable us to find subgraphs that are statistically significantly associated with the class variable from graph databases, it is challenging to interpret the resu... 详细信息
来源: 评论
Expectation maximization over binary decision diagrams for probabilistic logic programs
收藏 引用
INTELLIGENT DATA ANALYSIS 2013年 第2期17卷 343-363页
作者: Bellodi, Elena Riguzzi, Fabrizio Univ Ferrara ENDIF Dipartimento Ingn I-44122 Ferrara Italy
Recently much work in Machine Learning has concentrated on using expressive representation languages that combine aspects of logic and probability. A whole field has emerged, called Statistical Relational Learning, ri... 详细信息
来源: 评论