咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 2 篇 logic-based mach...
  • 2 篇 inductive logic ...
  • 1 篇 neural-symbolic ...
  • 1 篇 interactive mach...
  • 1 篇 distributional s...

机构

  • 1 篇 univ pompeu fabr...
  • 1 篇 ibm res europe w...
  • 1 篇 imperial coll lo...
  • 1 篇 univ bristol bri...
  • 1 篇 ilasp ltd granth...

作者

  • 1 篇 cunnington danie...
  • 1 篇 ray oliver
  • 1 篇 law mark
  • 1 篇 lobo jorge
  • 1 篇 russo alessandra
  • 1 篇 deane oliver

语言

  • 2 篇 英文
检索条件"主题词=Logic-based Machine Learning"
2 条 记 录,以下是1-10 订阅
排序:
FFNSL: Feed-Forward Neural-Symbolic Learner
收藏 引用
machine learning 2023年 第2期112卷 515-569页
作者: Cunnington, Daniel Law, Mark Lobo, Jorge Russo, Alessandra IBM Res Europe Winchester England Imperial Coll London London England ILASP Ltd Grantham England Univ Pompeu Fabra ICREA Barcelona Spain
logic-based machine learning aims to learn general, interpretable knowledge in a data-efficient manner. However, labelled data must be specified in a structured logical form. To address this limitation, we propose a n... 详细信息
来源: 评论
Interactive Model Refinement in Relational Domains with Inductive logic Programming  28
Interactive Model Refinement in Relational Domains with Indu...
收藏 引用
28th Annual Conference on Intelligent User Interfaces (IUI)
作者: Deane, Oliver Ray, Oliver Univ Bristol Bristol Avon England
This paper presents an interactive system for exploring and editing logic-based machine learning models specialised for the relational reasoning problem domain. Prior work has highlighted the value of visual interface... 详细信息
来源: 评论