咨询与建议

限定检索结果

文献类型

  • 75 篇 期刊文献
  • 13 篇 会议
  • 3 篇 学位论文

馆藏范围

  • 91 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 67 篇 理学
    • 50 篇 统计学(可授理学、...
    • 21 篇 数学
    • 8 篇 物理学
    • 5 篇 生物学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 43 篇 工学
    • 28 篇 计算机科学与技术...
    • 17 篇 电气工程
    • 9 篇 信息与通信工程
    • 7 篇 软件工程
    • 3 篇 控制科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 交通运输工程
    • 1 篇 生物工程
    • 1 篇 网络空间安全
  • 26 篇 经济学
    • 25 篇 应用经济学
    • 1 篇 理论经济学
  • 9 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 农林经济管理
  • 7 篇 医学
    • 5 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 药学(可授医学、理...
  • 3 篇 农学
  • 2 篇 教育学
    • 2 篇 心理学(可授教育学...

主题

  • 91 篇 mm algorithm
  • 12 篇 em algorithm
  • 6 篇 sparsity
  • 6 篇 maximum likeliho...
  • 5 篇 variable selecti...
  • 5 篇 lasso
  • 4 篇 binary data
  • 4 篇 regularization
  • 4 篇 model-based clus...
  • 3 篇 mixture models
  • 3 篇 clustering
  • 3 篇 svm
  • 3 篇 scad
  • 3 篇 convergence acce...
  • 3 篇 independent vect...
  • 3 篇 global convergen...
  • 3 篇 rank data
  • 2 篇 student's-t prio...
  • 2 篇 iterative majori...
  • 2 篇 network massive ...

机构

  • 7 篇 univ calif los a...
  • 7 篇 univ calif los a...
  • 5 篇 southern univ sc...
  • 5 篇 texas a&m univ d...
  • 4 篇 penn state univ ...
  • 3 篇 purple mt labs p...
  • 3 篇 shenzhen univ co...
  • 3 篇 univ calif los a...
  • 3 篇 n carolina state...
  • 2 篇 chinese acad sci...
  • 2 篇 univ hong kong d...
  • 2 篇 southern univ sc...
  • 2 篇 univ int busines...
  • 2 篇 shanghai univ fi...
  • 2 篇 univ calif los a...
  • 2 篇 zhongnan univ ec...
  • 2 篇 univ calif los a...
  • 2 篇 univ int busines...
  • 2 篇 michigan state u...
  • 2 篇 southeast univ n...

作者

  • 9 篇 lange kenneth
  • 7 篇 tian guo-liang
  • 5 篇 zhou hua
  • 4 篇 lee seokho
  • 3 篇 gao xiqi
  • 3 篇 wang zhu
  • 3 篇 hunter dr
  • 3 篇 tang man-lai
  • 3 篇 brendel andreas
  • 3 篇 kellermann walte...
  • 3 篇 huang jianhua z.
  • 3 篇 zhang chi
  • 3 篇 yuen kam chuen
  • 2 篇 chi eric c.
  • 2 篇 chattopadhyay ab...
  • 2 篇 zhu wen-jie
  • 2 篇 liu yin
  • 2 篇 browne ryan p.
  • 2 篇 wu tong tong
  • 2 篇 nguyen hien d.

语言

  • 85 篇 英文
  • 6 篇 其他
检索条件"主题词=MM algorithm"
91 条 记 录,以下是11-20 订阅
排序:
Unified robust estimation
收藏 引用
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS 2024年 第1期66卷 77-102页
作者: Wang, Zhu Univ Tennessee Hlth Sci Ctr Dept Prevent Med 66 N Pauline St Memphis TN 38163 USA
Robust estimation is primarily concerned with providing reliable parameter estimates in the presence of outliers. Numerous robust loss functions have been proposed in regression and classification, along with various ... 详细信息
来源: 评论
A General Inferential Framework for Singly-Truncated Bivariate Normal Models with Applications in Economics
收藏 引用
COMPUTATIONAL ECONOMICS 2024年 第5期64卷 2747-2781页
作者: Liu, Yin Tian, Guo-Liang Zhang, Chi Qin, Hong Zhongnan Univ Econ & Law Sch Math & Stat Wuhan Hubei Peoples R China Southern Univ Sci & Technol Dept Stat & Data Sci Shenzhen Guangdong Peoples R China Shenzhen Univ Coll Econ Shenzhen Guangdong Peoples R China
To analyze the singly-truncated bivariate economic data, we establish a class of singly-truncated bivariate normal distributions via stochastically representing the original bivariate normal random vector as a mixture... 详细信息
来源: 评论
mm for penalized estimation
收藏 引用
TEST 2022年 第1期31卷 54-75页
作者: Wang, Zhu UT Hlth San Antonio Dept Populat Hlth Sci San Antonio TX 78229 USA
Penalized estimation can conduct variable selection and parameter estimation simultaneously. The general framework is to minimize a loss function subject to a penalty designed to generate sparse variable selection. Th... 详细信息
来源: 评论
CMPLE: Correlation Modeling to Decode Photosynthesis Using the Minorize-Maximize algorithm
收藏 引用
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2024年 1-24页
作者: Chattopadhyay, Abhijnan Hoh, Donghee Kramer, David M. Maiti, Tapabrata Sinha, Samiran Natl Inst Environm Hlth Sci NIH Epidemiol Branch Res Triangle Pk Durham NC USA MSU DOE Plant Res Lab E Lansing MI USA Michigan State Univ Dept Biochem & Mol Biol E Lansing MI USA Michigan State Univ Dept Stat & Probabil E Lansing MI USA Texas A&M Univ Dept Stat College Stn TX 77843 USA
In plant genomic experiments, correlations among various biological traits (phenotypes) give new insights into how genetic diversity may have tuned biological processes to enhance fitness under diverse conditions. Con... 详细信息
来源: 评论
De-Noising of Sparse Signals Using Mixture Model Shrinkage Function
收藏 引用
IEEE ACCESS 2023年 11卷 7551-7563页
作者: Ullah, Hayat Amir, Muhammad Iqbal, Muhammad Malik, Suheel Abdullah Jadoon, Muhammad Mohsin Khan NYU Tandon Sch Engn Dept Elect & Comp Engn New York NY 11201 USA Int Islamic Univ Islamabad Dept Elect Engn Islamabad 44000 Pakistan Tampere Univ Dept Automat & Mech Engn Tampere 33720 Finland Pak Austria Fachhsch Inst Fac Elect Com IT & Design Haripur 22653 Pakistan
In this work a new thresholding function referred to as 'mixture model shrinkage' (mmS) based on the minimization of a convex cost function is proposed. Normally, thresholding functions underestimate larger si... 详细信息
来源: 评论
A multinomial canonical decomposition model, with emphasis on the analysis of multivariate binary data
收藏 引用
METRIKA 2025年 1-30页
作者: de Rooij, Mark Leiden Univ Methodol & Stat Dept Leiden Netherlands
In this paper, we propose to decompose the canonical parameter of a multinomial model into a set of participant scores and category scores. External information about the participants or the categories can be used to ... 详细信息
来源: 评论
Sparse logistic functional principal component analysis for binary data
收藏 引用
STATISTICS AND COMPUTING 2023年 第1期33卷 1-12页
作者: Zhong, Rou Liu, Shishi Li, Haocheng Zhang, Jingxiao Renmin Univ China Ctr Appl Stat Sch Stat Beijing Peoples R China Hangzhou Dianzi Univ Sch Econ Hangzhou Peoples R China Univ Calgary Dept Math & Stat Calgary AB Canada
Functional binary datasets occur frequently in real practice, whereas discrete characteristics of the data can bring challenges to model estimation. In this paper, we propose a sparse logistic functional principal com... 详细信息
来源: 评论
Distributed Precoding for Network Massive MIMO Systems Without Data Sharing
收藏 引用
IEEE SYSTEMS JOURNAL 2023年 第4期17卷 6057-6068页
作者: Zhu, Wen-Jie Sun, Chen Gao, Xiqi Southeast Univ Natl Mobile Commun Res Lab Nanjing 210096 Peoples R China Purple Mt Labs Nanjing 211100 Peoples R China
This article delves into the distributed precoding for network massive multiinput-multioutput (NM-MIMO) systems where no user data stream is shared among the base stations (BSs). Aiming to navigate the challenge of mi... 详细信息
来源: 评论
A new algorithm and a discussion about visualization for logistic reduced rank regression
收藏 引用
Behaviormetrika 2024年 第1期51卷 389-410页
作者: de Rooij, Mark Institute of Psychology Department Methodology and Statistics Leiden University Leiden Netherlands
Logistic reduced rank regression is a useful data analysis tool when we have multiple binary response variables and a set of predictors. In this paper, we describe logistic reduced rank regression and present a new ma... 详细信息
来源: 评论
Distributed Learning of Finite Gaussian Mixtures
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2022年 第1期23卷 1-40页
作者: Zhang, Qiong Chen, Jiahua Univ British Columbia Dept Stat Vancouver BC V6T 1Z4 Canada
Advances in information technology have led to extremely large datasets that are often kept in different storage centers. Existing statistical methods must be adapted to overcome the resulting computational obstacles ... 详细信息
来源: 评论