咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 物理学
    • 1 篇 生物学
  • 1 篇 工学
    • 1 篇 机械工程
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 internet of thin...
  • 1 篇 mlp
  • 1 篇 vision transform...
  • 1 篇 lgbm
  • 1 篇 ahpnd
  • 1 篇 pblup
  • 1 篇 hyperparameter o...
  • 1 篇 computer vision ...
  • 1 篇 snp
  • 1 篇 pearson correlat...
  • 1 篇 gated recurrent ...
  • 1 篇 nb
  • 1 篇 random forest
  • 1 篇 quantitative str...
  • 1 篇 single nucleotid...
  • 1 篇 frames per secon...
  • 1 篇 floating point o...
  • 1 篇 dissolved oxygen
  • 1 篇 random ferns
  • 1 篇 you only look on...

机构

  • 1 篇 hubei key labora...
  • 1 篇 university of ch...
  • 1 篇 institute of hyd...

作者

  • 1 篇 xia shibin
  • 1 篇 wu zhenbin
  • 1 篇 yang hang
  • 1 篇 feng qi
  • 1 篇 zhang yi

语言

  • 1 篇 其他
检索条件"主题词=Machine Learning - Kernel Additive Model Learning"
1 条 记 录,以下是1-10 订阅
排序:
AI-driven aquaculture: A review of technological innovations and their sustainable impacts
收藏 引用
Artificial Intelligence in Agriculture 2025年 第3期15卷 508-525页
作者: Yang, Hang Feng, Qi Xia, Shibin Wu, Zhenbin Zhang, Yi Institute of Hydrobiology Chinese Academy of Sciences Wuhan430072 China Hubei Key Laboratory of Mineral Resources Processing and Environment Wuhan University of Technology Wuhan430070 China University of Chinese Academy of Sciences Beijing100049 China
The integration of artificial intelligence (AI) in aquaculture has been identified as a transformative force, enhancing various operational aspects from water quality management to genetic optimization. This review pr... 详细信息
来源: 评论