咨询与建议

限定检索结果

文献类型

  • 165 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 172 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 171 篇 工学
    • 167 篇 控制科学与工程
    • 162 篇 电气工程
    • 12 篇 计算机科学与技术...
    • 4 篇 机械工程
    • 4 篇 生物医学工程(可授...
    • 4 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 石油与天然气工程
    • 3 篇 软件工程
    • 2 篇 信息与通信工程
    • 1 篇 材料科学与工程(可...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 172 篇 machine learning...
  • 54 篇 reinforcement le...
  • 30 篇 robots
  • 20 篇 imitation learni...
  • 19 篇 task analysis
  • 19 篇 training
  • 16 篇 trajectory
  • 16 篇 model learning f...
  • 15 篇 deep learning me...
  • 14 篇 motion and path ...
  • 13 篇 optimization and...
  • 11 篇 robot safety
  • 10 篇 legged robots
  • 9 篇 planning
  • 9 篇 robot sensing sy...
  • 8 篇 learning from de...
  • 7 篇 safety
  • 7 篇 robust/adaptive ...
  • 7 篇 autonomous vehic...
  • 7 篇 collision avoida...

机构

  • 4 篇 idiap res inst c...
  • 3 篇 ecole polytech f...
  • 3 篇 univ texas austi...
  • 2 篇 sun yat sen univ...
  • 2 篇 ulsan natl inst ...
  • 2 篇 karlsruhe inst t...
  • 2 篇 george mason uni...
  • 2 篇 mitsubishi elect...
  • 2 篇 sun yat sen univ...
  • 2 篇 peking univ coll...
  • 2 篇 vector inst arti...
  • 2 篇 saitama univ gra...
  • 2 篇 mit dept aeronau...
  • 2 篇 george mason uni...
  • 2 篇 mit cambridge ma...
  • 2 篇 fudan univ acad ...
  • 2 篇 univ penn grasp ...
  • 2 篇 univ calif berke...
  • 2 篇 ji hua lab peopl...
  • 2 篇 korea adv inst s...

作者

  • 4 篇 schoellig angela...
  • 4 篇 berenson dmitry
  • 4 篇 xiao xuesu
  • 4 篇 calinon sylvain
  • 3 篇 zhou siqi
  • 3 篇 stone peter
  • 3 篇 brunke lukas
  • 3 篇 chung soon-jo
  • 3 篇 zhang feitian
  • 3 篇 singh arun kumar
  • 3 篇 pavone marco
  • 2 篇 hermann lukas
  • 2 篇 liu bo
  • 2 篇 rajendran sunil ...
  • 2 篇 kahn gregory
  • 2 篇 hou taixian
  • 2 篇 kruusamae karl
  • 2 篇 righetti ludovic
  • 2 篇 tomizuka masayos...
  • 2 篇 zhai peng

语言

  • 172 篇 英文
检索条件"主题词=Machine Learning for Robot Control"
172 条 记 录,以下是1-10 订阅
排序:
Contact-Rich SE(3)-Equivariant robot Manipulation Task learning via Geometric Impedance control
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2024年 第2期9卷 1508-1515页
作者: Seo, Joohwan Prakash, Nikhil P. S. Zhang, Xiang Wang, Changhao Choi, Jongeun Tomizuka, Masayoshi Horowitz, Roberto Univ Calif Berkeley Dept Mech Engn Berkeley CA 94720 USA Yonsei Univ Sch Mech Engn Seoul 03722 South Korea
This letter presents a differential geometric control approach that leverages SE(3) group invariance and equivariance to increase transferability in learning robot manipulation tasks that involve interaction with the ... 详细信息
来源: 评论
Model Optimization in Deep learning Based robot control for Autonomous Driving
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2024年 第1期9卷 715-722页
作者: Paniego, Sergio Paliwal, Nikhil Canas, Jose Maria Univ Rey Juan Carlos Madrid 28933 Spain JdeRobot Org Madrid 28922 Spain Saarland Univ D-66123 Saarbrucken Germany
Deep learning (DL) has been successfully used in robotics for perception tasks and end-to-end robot control. In the context of autonomous driving, this work explores and compares a variety of alternatives for model op... 详细信息
来源: 评论
Sensorimotor learning With Stability Guarantees via Autonomous Neural Dynamic Policies
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2025年 第2期10卷 1760-1767页
作者: Totsila, Dionis Chatzilygeroudis, Konstantinos Modugno, Valerio Hadjivelichkov, Denis Kanoulas, Dimitrios Univ Lorraine Inria CNRS Loria F-54000 Nancy France Univ Patras Dept Math Computat Intelligence Lab CILab Patras 26504 Greece Univ Patras Dept Elect & Comp Engn Lab Automat & Robot LAR Patras 26504 Greece UCL Dept Comp Sci Robot Percept & Learning Lab RPL Lab London WC1E 6BT England Archimedes Athena RC Maroussi 15125 Greece
State-of-the-art sensorimotor learning algorithms, either in the context of reinforcement learning or imitation learning, offer policies that can often produce unstable behaviors, damaging the robot and/or the environ... 详细信息
来源: 评论
ALARM: Safe Reinforcement learning With Reliable Mimicry for Robust Legged Locomotion
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2025年 第7期10卷 6768-6775页
作者: Zhou, Qiqi Ding, Hui Chen, Teng Man, Luxin Jiang, Han Zhang, Guoteng Li, Bin Rong, Xuewen Li, Yibin Shandong Univ Sch Control Sci & Engn Jinan 250061 Peoples R China Qilu Univ Technol Shandong Acad Sci Sch Math & Stat Jinan 250353 Peoples R China
Legged robots are supposed to traverse complicated environments, which makes it challenging to design a model-based controller due to their functional complexity. Currently, using deep reinforcement learning to improv... 详细信息
来源: 评论
Certifiable Reachability learning Using a New Lipschitz Continuous Value Function
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2025年 第4期10卷 3582-3589页
作者: Li, Jingqi Lee, Donggun Lee, Jaewon Dong, Kris Shengjun Sojoudi, Somayeh Tomlin, Claire Univ Calif Berkeley Berkeley CA 94704 USA North Carolina State Univ Raleigh NC 27606 USA Boson AI Santa Clara CA 95054 USA
We propose a new reachability learning framework for high-dimensional nonlinear systems, focusing on reach-avoid problems. These problems require computing the reach-avoid set, which ensures that all its elements can ... 详细信息
来源: 评论
PIETRA: Physics-Informed Evidential learning for Traversing Out-of-Distribution Terrain
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2025年 第3期10卷 2359-2366页
作者: Cai, Xiaoyi Queeney, James Xu, Tong Datar, Aniket Pan, Chenhui Miller, Max Flather, Ashton Osteen, Philip R. Roy, Nicholas Xiao, Xuesu How, Jonathan P. MIT Cambridge MA 02139 USA Mitsubishi Elect Res Labs MERL Cambridge MA 02139 USA George Mason Univ Fairfax VA 22030 USA DEVCOM Army Res Lab Adelphi MD 20783 USA
Self-supervised learning is a powerful approach for developing traversability models for off-road navigation, but these models often struggle with inputs unseen during training. Existing methods utilize techniques lik... 详细信息
来源: 评论
π-MPPI: A Projection-Based Model Predictive Path Integral Scheme for Smooth Optimal control of Fixed-Wing Aerial Vehicles
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2025年 第6期10卷 6496-6503页
作者: Andrejev, Edvin Martin Manoharan, Amith Unt, Karl-Eerik Singh, Arun Kumar Univ Tartu Inst Technol EE-50411 Tartu Estonia Estonian Aviat Acad EE-61707 Tartu Estonia
Model Predictive Path Integral (MPPI) is a popular sampling-based Model Predictive control (MPC) algorithm for nonlinear systems. It optimizes trajectories by sampling control sequences and averaging them. However, a ... 详细信息
来源: 评论
Enhancing Exploration With Diffusion Policies in Hybrid Off-Policy RL: Application to Non-Prehensile Manipulation
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2025年 第6期10卷 6143-6150页
作者: Le, Huy Hoang, Tai Gabriel, Miroslav Neumann, Gerhard Vien, Ngo Anh Bosch Ctr Artificial Intelligence D-71272 Renningen Germany Karlsruhe Inst Technol Inst Anthropomat & Robot D-76131 Karlsruhe Germany
learning diverse policies for non-prehensile manipulation is essential for improving skill transfer and generalization to out-of-distribution scenarios. In this work, we enhance exploration through a two-fold approach... 详细信息
来源: 评论
QT-TDM: Planning With Transformer Dynamics Model and Autoregressive Q-learning
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2025年 第1期10卷 112-119页
作者: Kotb, Mostafa Weber, Cornelius Hafez, Muhammad Burhan Wermter, Stefan Univ Hamburg Dept Informat Knowledge Technol Grp D-22527 Hamburg Germany Aswan Univ Fac Sci Math Dept Aswan 81528 Egypt Univ Southampton Sch Elect & Comp Sci Southampton SO17 1BJ England
Inspired by the success of the Transformer architecture in natural language processing and computer vision, we investigate the use of Transformers in Reinforcement learning (RL), specifically in modeling the environme... 详细信息
来源: 评论
Aerial Gym Simulator: A Framework for Highly Parallelized Simulation of Aerial robots
收藏 引用
IEEE robotICS AND AUTOMATION LETTERS 2025年 第4期10卷 4093-4100页
作者: Kulkarni, Mihir Rehberg, Welf Alexis, Kostas Norwegian Univ Sci & Technol Dept Engn Cybernet OS Bragstads Plass 2D N-7034 Trondheim Norway
This paper contributes the Aerial Gym Simulator, a highly parallelized, modular framework for simulation and rendering of arbitrary multirotor platforms based on NVIDIA Isaac Gym. Aerial Gym supports the simulation of... 详细信息
来源: 评论