咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 10 篇 会议

馆藏范围

  • 21 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 21 篇 工学
    • 19 篇 计算机科学与技术...
    • 8 篇 电气工程
    • 4 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 3 篇 理学
    • 3 篇 数学
    • 1 篇 系统科学
  • 2 篇 医学
    • 1 篇 临床医学
    • 1 篇 特种医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 21 篇 machine learning...
  • 8 篇 structured data
  • 7 篇 graph neural net...
  • 7 篇 deep learning
  • 4 篇 graph neural net...
  • 3 篇 big data on grap...
  • 3 篇 graph convolutio...
  • 3 篇 random data on g...
  • 3 篇 graph theory
  • 3 篇 signal processin...
  • 3 篇 graph convolutio...
  • 2 篇 vertex-frequency...
  • 2 篇 systems on graph...
  • 2 篇 network represen...
  • 2 篇 graph topology l...
  • 2 篇 graphs and tenso...
  • 1 篇 complex networks
  • 1 篇 reservoir comput...
  • 1 篇 structural healt...
  • 1 篇 reliability

机构

  • 5 篇 univ padua dept ...
  • 3 篇 imperial coll lo...
  • 3 篇 univ montenegro ...
  • 2 篇 vanderbilt univ ...
  • 2 篇 snap inc santa m...
  • 2 篇 univ trento disi...
  • 1 篇 cosmian f-75008 ...
  • 1 篇 isomorph labs en...
  • 1 篇 patagona technol...
  • 1 篇 rensselaer polyt...
  • 1 篇 toronto metropol...
  • 1 篇 univ padua human...
  • 1 篇 nanyang technol ...
  • 1 篇 univ pisa largo ...
  • 1 篇 griffith univ na...
  • 1 篇 rhein westfal th...
  • 1 篇 univ de lyon cnr...
  • 1 篇 fraunhofer fit d...
  • 1 篇 ens de lyon cnrs...
  • 1 篇 new jersey inst ...

作者

  • 8 篇 sperduti alessan...
  • 8 篇 pasa luca
  • 8 篇 navarin nicolo
  • 3 篇 stankovic ljubis...
  • 3 篇 constantinides a...
  • 3 篇 dakovic milos
  • 3 篇 erb wolfgang
  • 3 篇 mandic danilo
  • 3 篇 li shengxi
  • 3 篇 brajovic milos
  • 3 篇 scalzo bruno
  • 2 篇 derr tyler
  • 2 篇 ma yao
  • 1 篇 pei jian
  • 1 篇 cazabet remy
  • 1 篇 gallicchio claud...
  • 1 篇 cui peng
  • 1 篇 ma jianxin
  • 1 篇 chala sisay adug...
  • 1 篇 miller david

语言

  • 21 篇 英文
检索条件"主题词=Machine Learning on Graphs"
21 条 记 录,以下是1-10 订阅
排序:
The 3rd International Workshop on machine learning on graphs (MLoG)  23
The 3rd International Workshop on Machine Learning on Graphs...
收藏 引用
16th International Conference on Web Search and Data Mining
作者: Derr, Tyler Ma, Yao Rozemberczki, Benedek Shah, Neil Pan, Shirui Vanderbilt Univ Nashville TN 37235 USA New Jersey Inst Technol Newark NJ USA Isomorph Labs London England Snap Inc Santa Monica CA USA Griffith Univ Nathan Qld Australia
graphs, which encode pairwise relations between entities, are a kind of universal data structure for a lot of real-world data, including social networks, transportation networks, and chemical molecules. Many important... 详细信息
来源: 评论
The 5th InternationalWorkshop on machine learning on graphs (MLoG)  24
The 5th InternationalWorkshop on Machine Learning on Graphs ...
收藏 引用
17th ACM International Conference on Web Search and Data Mining (WSDM)
作者: Derr, Tyler Ma, Yao Ding, Kaize Zhao, Tong Ahmed, Nesreen K. Vanderbilt Univ Nashville TN 37235 USA Rensselaer Polytech Inst Troy NY USA Northwestern Univ Evanston IL USA Snap Inc Santa Monica CA USA Intel Labs Hillsboro OR USA
graphs, which encode pairwise relations between entities, are a kind of universal data structure for a lot of real-world data, including social networks, transportation networks, and chemical molecules. Many important... 详细信息
来源: 评论
Data Analytics on graphs Part III: machine learning on graphs, from Graph Topology to Applications
收藏 引用
FOUNDATIONS AND TRENDS IN machine learning 2020年 第4期13卷 332-530页
作者: Stankovic, Ljubisa Mandic, Danilo Dakovic, Milos Brajovic, Milos Scalzo, Bruno Li, Shengxi Constantinides, Anthony G. Univ Montenegro Podgorica Montenegro Imperial Coll London London England
Modern data analytics applications on graphs often operate on domains where graph topology is not known a priori, and hence its determination becomes part of the problem definition, rather than serving as prior knowle... 详细信息
来源: 评论
Empowering Simple Graph Convolutional Networks
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2023年 第4期35卷 4385-4399页
作者: Pasa, Luca Navarin, Nicolo Erb, Wolfgang Sperduti, Alessandro Univ Padua Dept Math Tullio Levi Civita I-35121 Padua Italy Univ Trento DISI I-38123 Trento Italy
Many neural networks for graphs are based on the graph convolution (GC) operator, proposed more than a decade ago. Since then, many alternative definitions have been proposed, which tend to add complexity (and nonline... 详细信息
来源: 评论
Multiresolution Reservoir Graph Neural Network
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2022年 第6期33卷 2642-2653页
作者: Pasa, Luca Navarin, Nicolo Sperduti, Alessandro Univ Padua Human Inspired Technol Res Ctr HIT Dept Math Tullio Levi Civita I-35121 Padua Italy
Graph neural networks are receiving increasing attention as state-of-the-art methods to process graph-structured data. However, similar to other neural networks, they tend to suffer from a high computational cost to p... 详细信息
来源: 评论
A unified framework for backpropagation-free soft and hard gated graph neural networks
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2024年 第4期66卷 2393-2416页
作者: Pasa, Luca Navarin, Nicolo Erb, Wolfgang Sperduti, Alessandro Univ Padua Dept Math Padua Italy Univ Trento DISI Trento Italy
We propose a framework for the definition of neural models for graphs that do not rely on backpropagation for training, thus making learning more biologically plausible and amenable to parallel implementation. Our pro... 详细信息
来源: 评论
Polynomial-based graph convolutional neural networks for graph classification
收藏 引用
machine learning 2022年 第4期111卷 1205-1237页
作者: Pasa, Luca Navarin, Nicolo Sperduti, Alessandro Univ Padua Dept Math Padua Italy Univ Padua Human Inspired Technol Res Ctr Padua Italy
Graph convolutional neural networks exploit convolution operators, based on some neighborhood aggregating scheme, to compute representations of graphs. The most common convolution operators only exploit local topologi... 详细信息
来源: 评论
Scalable Semi-Supervised Graph learning Techniques for Anti Money Laundering
收藏 引用
IEEE ACCESS 2024年 12卷 50012-50029页
作者: Karim, Md. Rezaul Hermsen, Felix Chala, Sisay Adugna De Perthuis, Paola Mandal, Avikarsha Rhein Westfal TH Aachen Dept Informat Syst & Databases D-52074 Aachen Germany Fraunhofer FIT Dept Data Sci & Artificial Intelligence D-53757 St Augustin Germany Ecole Normale Super ENS F-75005 Paris France Cosmian F-75008 Paris France
Money laundering is the process by which criminals move large sums of illicit money to hidden locations and integrate them as legal funds through existing financial services. The United Nations (UN) estimates that 2 t... 详细信息
来源: 评论
Fair Contrastive learning on graphs
收藏 引用
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 2022年 8卷 475-488页
作者: Kose, Oyku Deniz Shen, Yanning Univ Calif Irvine Dept Elect Engn & Comp Sci Irvine CA 92623 USA
Node representation learning plays a critical role in learning over graphs. Specifically, the success of contrastive learning methods in unsupervised node representation learning has been demonstrated for various task... 详细信息
来源: 评论
A computational framework for modeling complex sensor network data using graph signal processing and graph neural networks in structural health monitoring
收藏 引用
APPLIED NETWORK SCIENCE 2021年 第1期6卷 1-24页
作者: Bloemheuvel, Stefan van den Hoogen, Jurgen Atzmueller, Martin Tilburg Univ Tilburg Netherlands Jheronimus Acad Data Sci SHertogenbosch Netherlands Osnabruck Univ Semant Informat Syst Grp Osnabruck Germany
Complex networks lend themselves for the modeling of multidimensional data, such as relational and/or temporal data. In particular, when such complex data and their inherent relationships need to be formalized, comple... 详细信息
来源: 评论