咨询与建议

限定检索结果

文献类型

  • 4 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 5 篇 软件工程
    • 3 篇 计算机科学与技术...

主题

  • 5 篇 machine learning...
  • 3 篇 empirical study
  • 1 篇 code review
  • 1 篇 software vulnera...
  • 1 篇 source code anal...
  • 1 篇 vulnerability de...
  • 1 篇 pre-trained mode...
  • 1 篇 software securit...
  • 1 篇 logging
  • 1 篇 vulnerabilities
  • 1 篇 prompt tuning
  • 1 篇 code comprehensi...

机构

  • 2 篇 univ svizzera it...
  • 1 篇 univ sannio bene...
  • 1 篇 william & mary s...
  • 1 篇 univ molise camp...
  • 1 篇 univ svizzera ia...
  • 1 篇 german aerosp ct...
  • 1 篇 univ svizzera it...

作者

  • 4 篇 mastropaolo anto...
  • 4 篇 bavota gabriele
  • 3 篇 pascarella luca
  • 1 篇 nardone vittoria
  • 1 篇 sonnekalb tim
  • 1 篇 poshyvanyk denys
  • 1 篇 masiero simone
  • 1 篇 tufano rosalia
  • 1 篇 aghajani emad
  • 1 篇 di penta massimi...

语言

  • 5 篇 英文
检索条件"主题词=Machine learning on code"
5 条 记 录,以下是1-10 订阅
排序:
Automated variable renaming: are we there yet?
收藏 引用
EMPIRICAL SOFTWARE ENGINEERING 2023年 第2期28卷 1-26页
作者: Mastropaolo, Antonio Aghajani, Emad Pascarella, Luca Bavota, Gabriele Univ Svizzera italiana SEART Software Inst Lugano Switzerland
Identifiers, such as method and variable names, form a large portion of source code. Therefore, low-quality identifiers can substantially hinder code comprehension. To support developers in using meaningful identifier... 详细信息
来源: 评论
machine-learning Supported Vulnerability Detection in Source code  2019
Machine-Learning Supported Vulnerability Detection in Source...
收藏 引用
27th ACM Joint Meeting on European Software Engineering Conference (ESEC) / Symposium on the Foundations of Software Engineering (FSE)
作者: Sonnekalb, Tim German Aerosp Ctr DLR Inst Data Sci Jena Germany
The awareness of writing secure code rises with the increasing number of attacks and their resultant damage. But often, software developers are no security experts and vulnerabilities arise unconsciously during the de... 详细信息
来源: 评论
How the Training Procedure Impacts the Performance of Deep learning-based Vulnerability Patching  24
How the Training Procedure Impacts the Performance of Deep L...
收藏 引用
28th International Conference on Evaluation and Assessment in Software Engineering (EASE)
作者: Mastropaolo, Antonio Nardone, Vittoria Bavota, Gabriele Di Penta, Massimiliano Univ Svizzera Ialiana USI Lugano Switzerland Univ Molise Campobasso Italy Univ Sannio Benevento Italy
Generative deep learning (DL) models have been successfully adopted for vulnerability patching. However, such models require the availability of a large dataset of patches to learn from. To overcome this issue, resear... 详细信息
来源: 评论
Using Pre-Trained Models to Boost code Review Automation  22
Using Pre-Trained Models to Boost Code Review Automation
收藏 引用
ACM/IEEE 44th International Conference on Software Engineering (ICSE)
作者: Tufano, Rosalia Masiero, Simone Mastropaolo, Antonio Pascarella, Luca Poshyvanyk, Denys Bavota, Gabriele Univ Svizzera Italiana SEART Software Inst Lugano Switzerland William & Mary SEMERU Comp Sci Dept Williamsburg VA USA
code review is a practice widely adopted in open source and industrial projects. Given the non-negligible cost of such a process, researchers started investigating the possibility of automating specific code review ta... 详细信息
来源: 评论
Using Deep learning to Generate Complete Log Statements  22
Using Deep Learning to Generate Complete Log Statements
收藏 引用
ACM/IEEE 44th International Conference on Software Engineering (ICSE)
作者: Mastropaolo, Antonio Pascarella, Luca Bavota, Gabriele Univ Svizzera Italiana Switzerland SEART Software Inst Lugano Switzerland
Logging is a practice widely adopted in several phases of the software lifecycle. For example, during software development log statements allow engineers to verify and debug the system by exposing fine-grained informa... 详细信息
来源: 评论