magnetic optimization algorithm (MOA) has emerged as a promising optimizationalgorithm that is inspired by the principles of magnetic field theory. In this paper we improve the performance of the algorithm in two asp...
详细信息
magnetic optimization algorithm (MOA) has emerged as a promising optimizationalgorithm that is inspired by the principles of magnetic field theory. In this paper we improve the performance of the algorithm in two aspects. First an Opposition-Based Learning (OBL) approach is proposed for the algorithm which is applied to the movement operator of the algorithm. Second, by learning from the algorithm's past experience, an adaptive parameter control strategy which dynamically sets the parameters of the algorithm during the optimization is proposed. To show the significance of the proposed parameter adaptation strategy, we compare the algorithm with two well-known parameter setting techniques on a number of benchmark problems. The results indicate that although the proposed algorithm with the adaptation strategy does not require to set the parameters of the algorithm prior to the optimization process, it outperforms MOA with other parameter setting strategies in most large-scale optimization problems. We also study the algorithm while employing the OBL by comparing it with the original version of MOA. Furthermore, the proposed algorithm is tested and compared with seven traditional population-based algorithms and eight state-of-the-art optimizationalgorithms. The comparisons demonstrate that the proposed algorithm outperforms the traditional algorithms in most benchmark problems, and its results is comparative to those obtained by the state-of-the-art algorithms. (C) 2015 Elsevier B.V. All rights reserved.
Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially ...
详细信息
Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially used mainly for mobile radio networks, the optimization of propagation model is becoming essential for efficient deployment of the network in different types of environment, namely rural, suburban and urban especially with the emergence of concepts such as digital terrestrial television, smart cities, Internet of Things (IoT) with wide deployment for different use cases such as smart grid, smart metering of electricity, gas and water. In this paper we use an optimizationalgorithm that is inspired by the principles of magnetic field theory namely magnetic optimization algorithm (MOA) to tune COST231-Hata propagation model. The dataset used is the result of drive tests carry out on field in the town of Limbe in Cameroon. We take into account the standard K-factor model and then use the MOA algorithm in order to set up a propagation model adapted to the physical environment of a town. The town of Limbe is used as an implementation case, but the proposed method can be used everywhere. The calculation of the root mean square error (RMSE) between the real data from the radio measurements and the prediction data obtained after the implementation of MOA allows the validation of the results. A comparative study between the value of the RMSE obtained by the new model and those obtained by the optimization using linear regression, by the standard COST231-Hata models, and the free space model is also done, this allows us to conclude that the new model obtained using MOA for the city of Limbe is better and more representative of this local environment than the standard COST231-Hata model. The new model obtained can be used for radio planning in the city of Limbé in Cameroon.
Epilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of the electroencephalogram (EEG) signal can be instrumental...
详细信息
Epilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of the electroencephalogram (EEG) signal can be instrumental for the proper diagnosis of this mental condition. This work presents a systematic assessment of the performance of different variants of the binary magnetic optimization algorithm (BMOA), two of which are introduced here, while serving as feature selectors for epileptic EEG signal identification. In this context, the optimum-path forest classifier was adopted as a classification model, whereas different wavelet families were considered for EEG feature extraction. In order to compare the performance of the improved BMOA variants against the traditional one, as well as other metaheuristic techniques, namely particle swarm optimization, binary bat algorithm, and genetic algorithm, we employed a well-known EEG benchmark dataset composed of five classes of EEG signals (two of which comprising normal patients with eyes open or closed, and the remaining comprising ill patients with different levels of epilepsy). Overall, the results evidenced the robustness of the proposed BMOA and its variants.
Corporate bankruptcy prediction is an important task in the determination of corporate solvency, that is, whether a company can meet up to its financial obligations or not. It is widely studied as it has a significant...
详细信息
Corporate bankruptcy prediction is an important task in the determination of corporate solvency, that is, whether a company can meet up to its financial obligations or not. It is widely studied as it has a significant effect on employees, customers, management, stockholders, bank lending assessments, and profitability. In recent years, machine learning techniques, particularly Artificial Neural Network (ANN), have widely been studied for bankruptcy prediction since they have proven to be a good predictor, especially in financial applications. A critical process in learning a network is weight training. Although the ANN is mathematically efficient, it has a complex weight training process, especially in computation time when involving a large training data. Many studies improved ANN's weight training using metaheuristic algorithms such as Evolutionary algorithms (EA), and Swarm Intelligence (SI) approaches for bankruptcy prediction. In this study, two metaheuristics algorithms, magnetic optimization algorithm (MOA) and Particle Swarm optimization (PSO), have been enhanced through hybridization to propose a new method MOA-PSO. Hybrid algorithms have been proven to be capable of solving optimization problems faster, with better accuracy. The MOA-PSO was used in training ANN to improve the performance of the ANN in bankruptcy prediction. The performance of the hybrid MOA-PSO was compared with that of four existing algorithms. The proposed hybrid MOA-PSO algorithm exhibits promising results with a faster and more accurate prediction, with 99.7% accuracy.
暂无评论