咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 39 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 39 篇 工学
    • 37 篇 计算机科学与技术...
    • 8 篇 电气工程
    • 5 篇 控制科学与工程
    • 5 篇 软件工程
    • 1 篇 信息与通信工程
  • 10 篇 管理学
    • 10 篇 管理科学与工程(可...
  • 4 篇 理学
    • 2 篇 生物学
    • 1 篇 数学
    • 1 篇 系统科学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 39 篇 many-objective o...
  • 6 篇 convergence
  • 5 篇 optimization
  • 4 篇 many-objective e...
  • 4 篇 vectors
  • 4 篇 particle swarm o...
  • 4 篇 decomposition
  • 3 篇 non-dominated so...
  • 3 篇 evolutionary com...
  • 2 篇 multi-objective ...
  • 2 篇 diversity
  • 2 篇 irregular pareto...
  • 2 篇 uniform design
  • 2 篇 weight vector
  • 2 篇 measurement
  • 1 篇 fuzzy logic
  • 1 篇 external archive
  • 1 篇 automated negoti...
  • 1 篇 evolutionary mul...
  • 1 篇 selection mechan...

机构

  • 4 篇 nanchang inst te...
  • 3 篇 univ surrey dept...
  • 2 篇 jiujiang univ sc...
  • 2 篇 shaanxi normal u...
  • 2 篇 xidian univ sch ...
  • 2 篇 taiyuan univ sci...
  • 2 篇 taiyuan univ sci...
  • 1 篇 school of electr...
  • 1 篇 yunnan normal un...
  • 1 篇 jiangnan univ sc...
  • 1 篇 hanyang univ dep...
  • 1 篇 nagoya univ grad...
  • 1 篇 univ tecn federi...
  • 1 篇 taiyuan univ sci...
  • 1 篇 guangdong univ t...
  • 1 篇 northwestern pol...
  • 1 篇 sichuan univ col...
  • 1 篇 south china univ...
  • 1 篇 zhejiang normal ...
  • 1 篇 univ exeter dept...

作者

  • 4 篇 wang hui
  • 4 篇 cui zhihua
  • 2 篇 akedo naoya
  • 2 篇 zou juan
  • 2 篇 wang yuping
  • 2 篇 wang shuai
  • 2 篇 wei zichen
  • 2 篇 liu yuan
  • 2 篇 zhang wensheng
  • 2 篇 nojima yusuke
  • 2 篇 gu qinghua
  • 2 篇 zhang maoqing
  • 2 篇 jin yaochu
  • 2 篇 sun chaoli
  • 2 篇 dai cai
  • 2 篇 cai xingjuan
  • 2 篇 wang hao
  • 2 篇 peng hu
  • 2 篇 chen lu
  • 2 篇 ishibuchi hisao

语言

  • 38 篇 英文
  • 1 篇 中文
检索条件"主题词=Many-objective Optimization Problems"
39 条 记 录,以下是1-10 订阅
排序:
Adaptive neighborhood selection for many-objective optimization problems
收藏 引用
APPLIED SOFT COMPUTING 2018年 64卷 186-198页
作者: Zou, Juan Zhang, Yuping Yang, Shengxiang Liu, Yuan Zheng, Jinhua Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Minist Educ Informat Engn Coll Xiangtan Hunan Peoples R China Hunan Prov Key Lab Intelligent Informat Proc & Ap Hengyang 421002 Peoples R China De Montfort Univ Sch Comp Sci & Informat Leicester LE1 9BH Leics England LED Lighting Res & Technol Ctr Guizhou TongRen Tongren 554300 Guizhou Peoples R China
It is generally accepted that conflicts between convergence and distribution deteriorate with an increase in the number of objectives. Furthermore, Pareto dominance loses its effectiveness in many-objectives optimizat... 详细信息
来源: 评论
Hyperplane-Approximation-Based Method for many-objective optimization problems with Redundant objectives
收藏 引用
EVOLUTIONARY COMPUTATION 2019年 第2期27卷 313-344页
作者: Li, Yifan Liu, Hai-Lin Goodman, E. D. Guangdong Univ Technol Sch Appl Math Guangzhou 510520 Guangdong Peoples R China Michigan State Univ BEACON Ctr Study Evolut Act NSF DBI 0939454 E Lansing MI 48824 USA
For a many-objective optimization problem with redundant objectives, we propose two novel objective reduction algorithms for linearly and, nonlinearly degenerate Pareto fronts. They are called LHA and NLHA respectivel... 详细信息
来源: 评论
A knowledge guided bacterial foraging optimization algorithm for many-objective optimization problems
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2022年 第23期34卷 21275-21299页
作者: Yang, Cuicui Weng, Yannan Ji, Junzhong Wu, Tongxuan Beijing Univ Technol Fac Informat Technol Coll Comp Sci Beijing Municipal Key Lab Multimedia & Intelligen Beijing Peoples R China
Despite that evolutionary and swarm intelligence algorithms have achieved considerable success on multi-objective optimization problems, they face huge challenges when dealing with many-objective optimization problems... 详细信息
来源: 评论
An improved MOEA/D design for many-objective optimization problems
收藏 引用
APPLIED INTELLIGENCE 2018年 第10期48卷 3839-3861页
作者: Zheng, Wei Tan, Yanyan Meng, Lili Zhang, Huaxiang Shandong Normal Univ Sch Informat Sci & Engn Jinan 250358 Shandong Peoples R China Shandong Normal Univ Inst Data Sci & Technol Jinan 250358 Shandong Peoples R China
MOEA/D is one of the most popular multi-objective evolutionary algorithms. To extend the effective application scope of MOEA/D for high-dimensional objectives, an improved MOEA/D design for many-objective optimization... 详细信息
来源: 评论
NSLS with the Clustering-Based Entropy Selection for many-objective optimization problems  18th
NSLS with the Clustering-Based Entropy Selection for Many-Ob...
收藏 引用
18th International Conference on Intelligent Computing (ICIC)
作者: Ma, Zhaobin Ding, Bowen Zhang, Xin Jiangnan Univ Sch Artificial Intelligence & Comp Sci Wuxi 214000 Jiangsu Peoples R China Jiangnan Univ Jiangsu Key Lab Media Design & Software Technol Wuxi 214000 Jiangsu Peoples R China Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun 130012 Peoples R China
The multi-objective optimization algorithm based on nondominated sorting and local search (NSLS) has shown great competitiveness in the most multi-objective optimization problems. NSLS can obtain the Pareto-optimal fr... 详细信息
来源: 评论
Behavior of EMO Algorithms on many-objective optimization problems with Correlated objectives
Behavior of EMO Algorithms on Many-Objective Optimization Pr...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC)
作者: Ishibuchi, Hisao Akedo, Naoya Ohyanagi, Hiroyuki Nojima, Yusuke Osaka Prefecture Univ Grad Sch Engn Dept Comp Sci & Intelligent Syst Sakai Osaka 5998531 Japan
Recently it has been pointed out in many studies that evolutionary multi-objective optimization (EMO) algorithms with Pareto dominance-based fitness evaluation do not work well on many-objective problems with four or ... 详细信息
来源: 评论
A Study on Two-Step Search based on PSO to Improve Convergence and Diversity for many-objective optimization problems
A Study on Two-Step Search based on PSO to Improve Convergen...
收藏 引用
IEEE Congress on Evolutionary Computation
作者: Hirano, Hiroyuki Yoshikawa, Tomohiro Nagoya Univ Grad Sch Engn Nagoya Aichi 4648601 Japan
Particle Swarm optimization (PSO) is one of the most effective search methods in optimization problems. Multi-objective optimization problems (MOPs) has been focused on and PSO researches applied to MOPs have been rep... 详细信息
来源: 评论
A non-dominated sorting based evolutionary algorithm for many-objective optimization problems
收藏 引用
SCIENTIA IRANICA 2021年 第6期28卷 3293-3314页
作者: Mane, S. U. Rao, M. R. Narasinga Deemed Univ Koneru Lakshmaiah Educ Fdn Dept Comp Sci & Engn Vaddeswaram AP India
The optimization problems with more than three objectives are many-objective optimization problems (MaOPs) that exist in various scientific and engineering domains. The existing multi-objective evolutionary algorithms... 详细信息
来源: 评论
Rank-based multimodal immune algorithm for many-objective optimization problems
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 第PartB期133卷
作者: Zhang, Hainan Gan, Jianhou Zhou, Juxiang Gao, Wei Yunnan Normal Univ Sch Informat Sci & Technol Kunming 650500 Yunnan Peoples R China Yunnan Normal Univ Key Lab Educ Informatizat Nationalities Minist Educ Kunming 650500 Yunnan Peoples R China Yunnan Normal Univ Yunnan Key Lab Smart Educ Kunming 650500 Yunnan Peoples R China
The immune algorithm (IA) is a prestigious heuristic algorithm based on a model of an artificial immune system, and the IA has shown promising results in the multi -objective optimization field. However, the algorithm... 详细信息
来源: 评论
An improved competitive particle swarm optimization for many-objective optimization problems
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2022年 第0期189卷 116118-116118页
作者: Gu, Qinghua Liu, Yingyin Chen, Lu Xiong, Naixue Xian Univ Architecture & Technol Sch Management 13 Yanta Rd Xian 710055 Shaanxi Peoples R China Xian Univ Architecture & Technol Sch Resources Engn 13 Yanta Rd Xian 710055 Shaanxi Peoples R China Northeastern State Univ Dept Math & Comp Sci Tahlequah OK 74464 USA
Multi-objective particle swarm optimization (MOPSO) has been widely applied to solve multi-objective optimization problems (MOPs), due to its efficient implementation and fast convergence. However, most MOPSOs are ine... 详细信息
来源: 评论