咨询与建议

限定检索结果

文献类型

  • 12 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 14 篇 计算机科学与技术...
    • 6 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 理学
    • 1 篇 生物学

主题

  • 19 篇 mapreduce progra...
  • 4 篇 hadoop cluster
  • 3 篇 distributed file...
  • 3 篇 hadoop framework
  • 2 篇 similarity measu...
  • 2 篇 hadoop
  • 2 篇 big data
  • 2 篇 optimization
  • 2 篇 apache pig latin
  • 2 篇 frequent itemset...
  • 2 篇 data locality
  • 2 篇 join and grouby-...
  • 2 篇 document similar...
  • 2 篇 data skew
  • 1 篇 gsp
  • 1 篇 management of re...
  • 1 篇 parallel process...
  • 1 篇 kinematic algori...
  • 1 篇 scalability
  • 1 篇 symmetric encryp...

机构

  • 1 篇 natl inst techno...
  • 1 篇 newcastle univ s...
  • 1 篇 univ santiago de...
  • 1 篇 natl inst techno...
  • 1 篇 dankook univ dep...
  • 1 篇 univ sultan moul...
  • 1 篇 politecn milan d...
  • 1 篇 univ florida sca...
  • 1 篇 baekseok univ de...
  • 1 篇 univ sultan moul...
  • 1 篇 univ chouaib dou...
  • 1 篇 western sydney u...
  • 1 篇 univ pisa dipart...
  • 1 篇 swinburne univ t...
  • 1 篇 construction sec...
  • 1 篇 yildiz tech univ...
  • 1 篇 univ francois ra...
  • 1 篇 saudi elect univ...
  • 1 篇 univ orleans ins...
  • 1 篇 auburn univ dept...

作者

  • 2 篇 beni-hssane abde...
  • 2 篇 erritali mohamme...
  • 2 篇 birjali marouane
  • 1 篇 ciavotta m.
  • 1 篇 zhenhang zhang
  • 1 篇 uzun-per meryem
  • 1 篇 li rui
  • 1 篇 sivasankar e.
  • 1 篇 li min
  • 1 篇 li xiaolin
  • 1 篇 xuan chunqing
  • 1 篇 abuin jose m.
  • 1 篇 bamha mostafa
  • 1 篇 qingyu peng
  • 1 篇 pena tomas f.
  • 1 篇 dejey d.
  • 1 篇 zhang jifu
  • 1 篇 shi youqun
  • 1 篇 pathan mukaddim
  • 1 篇 aktas mehmet s.

语言

  • 19 篇 英文
检索条件"主题词=MapReduce Programming Model"
19 条 记 录,以下是1-10 订阅
排序:
Applying mapreduce programming model for Handling Scientific Problems
Applying MapReduce Programming Model for Handling Scientific...
收藏 引用
5th International Conference on Information Science and Applications (ICISA)
作者: Kong, Yun Hee Park, Young B. Baekseok Univ Dept Informat & Commun Cheonan Si Chungcheongnam South Korea Dankook Univ Dept Comp Sci Yongin 330714 Gyeonggi Do South Korea
According to data volumes in scientific applications have grown exponentially, new scientific methods to analyze and organize the data are required. mapreduce programming is driving Internet services and those service... 详细信息
来源: 评论
A Novel Sequential Pattern Mining Algorithm for Large Scale Data Sequences  22nd
A Novel Sequential Pattern Mining Algorithm for Large Scale ...
收藏 引用
22nd International Conference on Computational Science and its Applications (ICCSA)
作者: Can, Ali Burak Uzun-Per, Meryem Aktas, Mehmet S. Akdeniz PE TUR AS BiletBank Res & Dev Ctr Istanbul Turkey Istanbul Hlth & Technol Univ Comp Engn Dept Istanbul Turkey Yildiz Tech Univ Comp Engn Dept Istanbul Turkey
Sequential pattern mining algorithms are unsupervised machine learning algorithms that allow finding sequential patterns on data sequences that have been put together based on a particular order. These algorithms are ... 详细信息
来源: 评论
BigDataSDNSim: A simulator for analyzing big data applications in software-defined cloud data centers
收藏 引用
SOFTWARE-PRACTICE & EXPERIENCE 2021年 第5期51卷 893-920页
作者: Alwasel, Khaled Calheiros, Rodrigo N. Garg, Saurabh Buyya, Rajkumar Pathan, Mukaddim Georgakopoulos, Dimitrios Ranjan, Rajiv Newcastle Univ Sch Comp Newcastle Upon Tyne Tyne & Wear England Saudi Elect Univ Coll Comp & Informat Riyadh Saudi Arabia Western Sydney Univ Sch Comp Data & Math Sci Sydney NSW Australia Univ Tasmania Sch Comp & Informat Syst Hobart Tas Australia Univ Melbourne Sch Comp & Informat Syst Melbourne Vic Australia Telstra Corp Ltd Melbourne Vic Australia Swinburne Univ Technol Sch Software & Elect Engn Melbourne Vic Australia
The integration and crosscoordination of big data processing and software-defined networking (SDN) are vital for improving the performance of big data applications. Various approaches for combining big data and SDN ha... 详细信息
来源: 评论
Design of Wireless Sensor Network Data Acquisition System via Health Sensor Based on Symmetric Encryption Algorithm
收藏 引用
JOURNAL OF TESTING AND EVALUATION 2023年 第1期51卷 278-290页
作者: Xuan, Chunqing Zhengzhou Business Univ Coll Informat & Elect Engn Dept Comp Sci & Technol 136 Zijing Rd Zhengzhou 451200 Peoples R China
In order to improve the data collection effect of the wireless sensor network, a data collection system based on symmetric encryption algorithm is designed via health sensor. Upload the received data to the host via R... 详细信息
来源: 评论
Extraction of mapreduce-based features from spectrograms for audio-based surveillance
收藏 引用
DIGITAL SIGNAL PROCESSING 2019年 87卷 1-9页
作者: Mulimani, Manjunath Koolagudi, Shashidhar G. Natl Inst Technol Karnataka Dept Comp Sci & Engn Surathkal 575025 India
In this paper, we proposed a novel parallel method for extraction of significant information from spectrograms using mapreduce programming model for the audio-based surveillance system, which effectively recognizes cr... 详细信息
来源: 评论
Research on mapreduce Parallel Optimization Method Based on Improved K-means Clustering Algorithm
Research on MapReduce Parallel Optimization Method Based on ...
收藏 引用
作者: Ye Xiong Qingyu Peng Zhenhang Zhang School of Automation & Electrical Engineering Lanzhou Jiaotong University Construction Second Division CMCU Engineering Co. Ltd. School of Electrical Engineering Chongqing University
The traditional K-means clustering algorithm occupies a large quantity of memory resources and computing costs when dealing with massive data. It is easy to be restricted by something such as the initial center point ... 详细信息
来源: 评论
Performance Improvement of mapreduce for Heterogeneous Clusters Based on Efficient Locality and Replica Aware Scheduling (ELRAS) Strategy
收藏 引用
WIRELESS PERSONAL COMMUNICATIONS 2017年 第3期95卷 2709-2733页
作者: Benifa, J. V. Bibal Dejey Anna Univ Dept Comp Sci & Engn Reg Campus Tirunelveli 627007 Tamil Nadu India
mapreduce is a parallel programming model for processing the data-intensive applications in a cloud environment. The scheduler greatly influences the performance of mapreduce model while utilized in heterogeneous clus... 详细信息
来源: 评论
FiDoop-DP: Data Partitioning in Frequent Itemset Mining on Hadoop Clusters
收藏 引用
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2017年 第1期28卷 101-114页
作者: Xun, Yaling Zhang, Jifu Qin, Xiao Zhao, Xujun Taiyuan Univ Sci & Technol Taiyuan 030024 Shanxi Peoples R China Auburn Univ Dept Comp Sci & Software Engn Samuel Ginn Coll Engn Auburn AL 36849 USA
Traditional parallel algorithms for mining frequent itemsets aim to balance load by equally partitioning data among a group of computing nodes. We start this study by discovering a serious performance problem of the e... 详细信息
来源: 评论
MapFIM: Memory Aware Parallelized Frequent Itemset Mining in Very Large Datasets  1
收藏 引用
28th International Conference on Database and Expert Systems Applications (DEXA)
作者: Duong, Khanh-Chuong Bamha, Mostafa Giacometti, Arnaud Li, Dominique Soulet, Arnaud Vrain, Christel Univ Francois Rabelais Tours LI EA 6300 Blois France Univ Orleans INSA Ctr Val de Loire LIFO EA 4022 Blois France
Mining frequent itemsets in large datasets has received much attention, in recent years, relying on mapreduce programming models. Many famous FIM algorithms have been parallelized in a mapreduce framework like Paralle... 详细信息
来源: 评论
Detecting Text Similarity Using mapreduce Framework
收藏 引用
Europe, Middle East and North Africa Conference on Technology and Security to Support Learning (EMENA-TSSL)
作者: Birjali, Marouane Beni-Hssane, Abderrahim Erritali, Mohammed Madani, Youness Univ Chouaib Doukkali Fac Sci Dept Comp Sci LAROSERI Lab El Jadida Morocco Univ Sultan Moulay Slimane Fac Sci & Technol Dept Comp Sci TIAD Lab Beni Mellal Morocco
The evaluation of similarities between textual documents was regarded as a subject of research strongly recommended in various domains. There are many of documents in a large amount of corpus. Most of them are require... 详细信息
来源: 评论