咨询与建议

限定检索结果

文献类型

  • 12 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 14 篇 计算机科学与技术...
    • 6 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 理学
    • 1 篇 生物学

主题

  • 19 篇 mapreduce progra...
  • 4 篇 hadoop cluster
  • 3 篇 distributed file...
  • 3 篇 hadoop framework
  • 2 篇 similarity measu...
  • 2 篇 hadoop
  • 2 篇 big data
  • 2 篇 optimization
  • 2 篇 apache pig latin
  • 2 篇 frequent itemset...
  • 2 篇 data locality
  • 2 篇 join and grouby-...
  • 2 篇 document similar...
  • 2 篇 data skew
  • 1 篇 gsp
  • 1 篇 management of re...
  • 1 篇 parallel process...
  • 1 篇 kinematic algori...
  • 1 篇 scalability
  • 1 篇 symmetric encryp...

机构

  • 1 篇 natl inst techno...
  • 1 篇 newcastle univ s...
  • 1 篇 univ santiago de...
  • 1 篇 natl inst techno...
  • 1 篇 dankook univ dep...
  • 1 篇 univ sultan moul...
  • 1 篇 politecn milan d...
  • 1 篇 univ florida sca...
  • 1 篇 baekseok univ de...
  • 1 篇 univ sultan moul...
  • 1 篇 univ chouaib dou...
  • 1 篇 western sydney u...
  • 1 篇 univ pisa dipart...
  • 1 篇 swinburne univ t...
  • 1 篇 construction sec...
  • 1 篇 yildiz tech univ...
  • 1 篇 univ francois ra...
  • 1 篇 saudi elect univ...
  • 1 篇 univ orleans ins...
  • 1 篇 auburn univ dept...

作者

  • 2 篇 beni-hssane abde...
  • 2 篇 erritali mohamme...
  • 2 篇 birjali marouane
  • 1 篇 ciavotta m.
  • 1 篇 zhenhang zhang
  • 1 篇 uzun-per meryem
  • 1 篇 li rui
  • 1 篇 sivasankar e.
  • 1 篇 li min
  • 1 篇 li xiaolin
  • 1 篇 xuan chunqing
  • 1 篇 abuin jose m.
  • 1 篇 bamha mostafa
  • 1 篇 qingyu peng
  • 1 篇 pena tomas f.
  • 1 篇 dejey d.
  • 1 篇 zhang jifu
  • 1 篇 shi youqun
  • 1 篇 pathan mukaddim
  • 1 篇 aktas mehmet s.

语言

  • 19 篇 英文
检索条件"主题词=MapReduce programming model"
19 条 记 录,以下是1-10 订阅
排序:
Applying mapreduce programming model for Handling Scientific Problems
Applying MapReduce Programming Model for Handling Scientific...
收藏 引用
5th International Conference on Information Science and Applications (ICISA)
作者: Kong, Yun Hee Park, Young B. Baekseok Univ Dept Informat & Commun Cheonan Si Chungcheongnam South Korea Dankook Univ Dept Comp Sci Yongin 330714 Gyeonggi Do South Korea
According to data volumes in scientific applications have grown exponentially, new scientific methods to analyze and organize the data are required. mapreduce programming is driving Internet services and those service... 详细信息
来源: 评论
BigDataSDNSim: A simulator for analyzing big data applications in software-defined cloud data centers
收藏 引用
SOFTWARE-PRACTICE & EXPERIENCE 2021年 第5期51卷 893-920页
作者: Alwasel, Khaled Calheiros, Rodrigo N. Garg, Saurabh Buyya, Rajkumar Pathan, Mukaddim Georgakopoulos, Dimitrios Ranjan, Rajiv Newcastle Univ Sch Comp Newcastle Upon Tyne Tyne & Wear England Saudi Elect Univ Coll Comp & Informat Riyadh Saudi Arabia Western Sydney Univ Sch Comp Data & Math Sci Sydney NSW Australia Univ Tasmania Sch Comp & Informat Syst Hobart Tas Australia Univ Melbourne Sch Comp & Informat Syst Melbourne Vic Australia Telstra Corp Ltd Melbourne Vic Australia Swinburne Univ Technol Sch Software & Elect Engn Melbourne Vic Australia
The integration and crosscoordination of big data processing and software-defined networking (SDN) are vital for improving the performance of big data applications. Various approaches for combining big data and SDN ha... 详细信息
来源: 评论
Performance Improvement of mapreduce for Heterogeneous Clusters Based on Efficient Locality and Replica Aware Scheduling (ELRAS) Strategy
收藏 引用
WIRELESS PERSONAL COMMUNICATIONS 2017年 第3期95卷 2709-2733页
作者: Benifa, J. V. Bibal Dejey Anna Univ Dept Comp Sci & Engn Reg Campus Tirunelveli 627007 Tamil Nadu India
mapreduce is a parallel programming model for processing the data-intensive applications in a cloud environment. The scheduler greatly influences the performance of mapreduce model while utilized in heterogeneous clus... 详细信息
来源: 评论
Extraction of mapreduce-based features from spectrograms for audio-based surveillance
收藏 引用
DIGITAL SIGNAL PROCESSING 2019年 87卷 1-9页
作者: Mulimani, Manjunath Koolagudi, Shashidhar G. Natl Inst Technol Karnataka Dept Comp Sci & Engn Surathkal 575025 India
In this paper, we proposed a novel parallel method for extraction of significant information from spectrograms using mapreduce programming model for the audio-based surveillance system, which effectively recognizes cr... 详细信息
来源: 评论
FiDoop-DP: Data Partitioning in Frequent Itemset Mining on Hadoop Clusters
收藏 引用
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2017年 第1期28卷 101-114页
作者: Xun, Yaling Zhang, Jifu Qin, Xiao Zhao, Xujun Taiyuan Univ Sci & Technol Taiyuan 030024 Shanxi Peoples R China Auburn Univ Dept Comp Sci & Software Engn Samuel Ginn Coll Engn Auburn AL 36849 USA
Traditional parallel algorithms for mining frequent itemsets aim to balance load by equally partitioning data among a group of computing nodes. We start this study by discovering a serious performance problem of the e... 详细信息
来源: 评论
Optimal Capacity Allocation for executing mapreduce Jobs in Cloud Systems  16
Optimal Capacity Allocation for executing MapReduce Jobs in ...
收藏 引用
16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)
作者: Malekimajd, M. Rizzi, A. M. Ardagna, D. Ciavotta, M. Passacantando, M. Movaghar, A. Sharif Univ Technol Dept Comp Engn Tehran Iran Politecn Milan Dipartimento Elettron Informaz & Bioingn I-20133 Milan Italy Univ Pisa Dipartimento Informat Pisa Italy
Nowadays, analyzing large amount of data is of paramount importance for many companies. Big data and business intelligence applications are facilitated by the mapreduce programming model while, at infrastructural laye... 详细信息
来源: 评论
MapFIM: Memory Aware Parallelized Frequent Itemset Mining in Very Large Datasets  1
收藏 引用
28th International Conference on Database and Expert Systems Applications (DEXA)
作者: Duong, Khanh-Chuong Bamha, Mostafa Giacometti, Arnaud Li, Dominique Soulet, Arnaud Vrain, Christel Univ Francois Rabelais Tours LI EA 6300 Blois France Univ Orleans INSA Ctr Val de Loire LIFO EA 4022 Blois France
Mining frequent itemsets in large datasets has received much attention, in recent years, relying on mapreduce programming models. Many famous FIM algorithms have been parallelized in a mapreduce framework like Paralle... 详细信息
来源: 评论
Measuring Documents Similarity in Large Corpus using mapreduce Algorithm  5
Measuring Documents Similarity in Large Corpus using MapRedu...
收藏 引用
5th International Conference on Multimedia Computing and Systems (ICMCS)
作者: Birjali, Marouane Beni-Hssane, Abderrahim Erritali, Mohammed Univ Chouaib Doukkali Dept Comp Sci Fac Sci El Jadida Morocco Univ Sultan Moulay Slimane Dept Comp Sci Fac Sci & Technol Beni Mellal Morocco
Document similarity measures between documents and queries has been extensively studied in information retrieval. Measuring the similarity of documents are crucial components of many text-analysis tasks, including inf... 详细信息
来源: 评论
Parallel Information Fusion Method for Microarray Data Analysis  3
Parallel Information Fusion Method for Microarray Data Analy...
收藏 引用
IEEE International Conference on Big Data
作者: Meng, Jun Li, Rui Zhang, Jing Dalian Univ Technol Sch Comp Sci & Technol Dalian Peoples R China
Classification of microarray data has always been a challenging task due to the enormous number of genes. Finding a small, closely related gene set to accurately classify disease cells is an important research problem... 详细信息
来源: 评论
Towards Scalability and Data Skew Handling in GroupBy-Joins using mapreduce model
Towards Scalability and Data Skew Handling in GroupBy-Joins ...
收藏 引用
15th Annual International Conference on Computational Science (ICCS)
作者: Hassan, M. Al Hajj Bamha, M. Lebanese Int Univ Beirut Lebanon Univ Orleans INSA Ctr Val Loire F-45067 Orleans France
For over a decade, mapreduce has become the leading programming model for parallel and massive processing of large volumes of data. This has been driven by the development of many frameworks such as Spark, Pig and Hiv... 详细信息
来源: 评论