咨询与建议

限定检索结果

文献类型

  • 50 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 82 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 77 篇 工学
    • 62 篇 计算机科学与技术...
    • 30 篇 电气工程
    • 7 篇 信息与通信工程
    • 7 篇 测绘科学与技术
    • 7 篇 生物医学工程(可授...
    • 6 篇 软件工程
    • 4 篇 控制科学与工程
    • 4 篇 环境科学与工程(可...
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 1 篇 机械工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 网络空间安全
  • 28 篇 医学
    • 18 篇 临床医学
    • 7 篇 特种医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 19 篇 理学
    • 9 篇 物理学
    • 7 篇 地球物理学
    • 3 篇 生物学
    • 2 篇 地理学
    • 1 篇 化学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 公共管理
  • 2 篇 农学
    • 1 篇 作物学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 82 篇 masked image mod...
  • 34 篇 self-supervised ...
  • 13 篇 vision transform...
  • 7 篇 deep learning
  • 6 篇 transformers
  • 6 篇 contrastive lear...
  • 5 篇 semantic segment...
  • 4 篇 representation l...
  • 4 篇 transformer
  • 4 篇 deepfake detecti...
  • 4 篇 feature extracti...
  • 4 篇 remote sensing
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 task analysis
  • 3 篇 image segmentati...
  • 3 篇 domain adaptatio...
  • 3 篇 visualization
  • 3 篇 vision transform...
  • 3 篇 computer vision

机构

  • 4 篇 univ chinese aca...
  • 3 篇 sichuan univ col...
  • 3 篇 univ chinese aca...
  • 2 篇 shanghai ai lab ...
  • 2 篇 natl univ def te...
  • 2 篇 univ sci & techn...
  • 2 篇 shanghai jiao to...
  • 2 篇 chinese acad sci...
  • 2 篇 huawei inc peopl...
  • 2 篇 peng cheng lab p...
  • 1 篇 hebei univ techn...
  • 1 篇 agcy sci technol...
  • 1 篇 nankai univ busi...
  • 1 篇 tianjin key lab ...
  • 1 篇 yunnan normal un...
  • 1 篇 peking univ peop...
  • 1 篇 hunan acad agr s...
  • 1 篇 minist nat resou...
  • 1 篇 duke univ durham...
  • 1 篇 sun yat sen univ...

作者

  • 4 篇 tian qi
  • 3 篇 xie lingxi
  • 3 篇 jiao jianbin
  • 2 篇 bai jinfeng
  • 2 篇 ye long
  • 2 篇 chen yang
  • 2 篇 ma xin
  • 2 篇 ji zhilong
  • 2 篇 liu chang
  • 2 篇 ye qixiang
  • 2 篇 tian yunjie
  • 1 篇 li yonghui
  • 1 篇 liu zihan
  • 1 篇 qiu xiaobin
  • 1 篇 guo jing
  • 1 篇 yan zhiyuan
  • 1 篇 bao jingjing
  • 1 篇 peng ying shu
  • 1 篇 wang yunhao
  • 1 篇 zihang jiang

语言

  • 79 篇 英文
  • 3 篇 其他
检索条件"主题词=Masked Image Modeling"
82 条 记 录,以下是11-20 订阅
排序:
MOODv2: masked image modeling for Out-of-Distribution Detection
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024年 第12期46卷 8994-9003页
作者: Li, Jingyao Chen, Pengguang Yu, Shaozuo Liu, Shu Jia, Jiaya Chinese Univ Hong Kong Dept Comp Sci & Engn Cent Ave Hong Kong Peoples R China SmartMore Shatin Hong Kong Peoples R China
The crux of effective out-of-distribution (OOD) detection lies in acquiring a robust in-distribution (ID) representation, distinct from OOD samples. While previous methods predominantly leaned on recognition-based tec... 详细信息
来源: 评论
masked image modeling Auxiliary Pseudo-Label Propagation with a Clustering Central Rectification Strategy for Cross-Scene Classification
收藏 引用
REMOTE SENSING 2024年 第11期16卷 1983页
作者: Zhang, Xinyi Zhuang, Yin Zhang, Tong Li, Can Chen, He Beijing Inst Technol Natl Key Lab Sci & Technol Space Born Intelligent Beijing 100081 Peoples R China
Cross-scene classification focuses on setting up an effective domain adaptation (DA) way to transfer the learnable knowledge from source to target domain, which can be reasonably achieved through the pseudo-label prop... 详细信息
来源: 评论
masked image modeling-based boundary reconstruction for 3D medical image segmentation
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2023年 166卷 107526-107526页
作者: Liu, Chang Cheng, Yuanzhi Tamura, Shinichi Harbin Inst Technol Sch Comp Sci & Technol Harbin 150001 Peoples R China Qingdao Univ Sci & Technol Sch Informat Sci & Technol Qingdao 266061 Shandong Peoples R China Osaka Univ Grad Sch Med 2-2 Yamadaoka Suita Osaka 5650871 Japan
Accurate segmentation of 3D medical images is vital for computer-aided diagnosis. However, the complexity of target morphological variations and a scarcity of labeled data make segmentation more challenging. Furthermo... 详细信息
来源: 评论
MIMIC: masked image modeling with image Correspondences
MIMIC: Masked Image Modeling with Image Correspondences
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Marathe, Kalyani Bigverdi, Mahtab Khan, Nishat Kundu, Tuhin Howe, Patrick Ranjit, Sharan S. Bhattad, Anand Kembhavi, Aniruddha Shapiro, Linda G. Krishna, Ranjay Univ Washington Seattle WA 98195 USA Allen Inst Artificial Intelligence Seattle WA USA Toyota Technol Inst Chicago IL USA
Dense pixel-specific representation learning at scale has been bottlenecked due to the unavailability of large-scale multi-view datasets. Current methods for building effective pretraining datasets heavily rely on ann... 详细信息
来源: 评论
PYRAMID masked image modeling FOR TRANSFORMER-BASED AERIAL OBJECT DETECTION  30
PYRAMID MASKED IMAGE MODELING FOR TRANSFORMER-BASED AERIAL O...
收藏 引用
30th IEEE International Conference on image Processing (ICIP)
作者: Zhang, Cong Liu, Tianshan Ju, Yakun Lam, Kin-Man Hong Kong Polytech Univ Dept Elect & Informat Engn Kowloon Hong Kong Peoples R China
Two obstacles, the scarcity of annotated samples and the difficulty in preserving multi-scale hierarchical representations, hinder the advancement of vision Transformer-based aerial object detection. The emergence of ... 详细信息
来源: 评论
ENHANCED masked image modeling FOR ANALYSIS OF DENTAL PANORAMIC RADIOGRAPHS  20
ENHANCED MASKED IMAGE MODELING FOR ANALYSIS OF DENTAL PANORA...
收藏 引用
20th IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Almalki, Amani Latecki, Longin Jan Temple Univ Dept Comp & Informat Sci Philadelphia PA 19122 USA
The computer-assisted radiologic informative report has received increasing research attention to facilitate diagnosis and treatment planning for dental care providers. However, manual interpretation of dental images ... 详细信息
来源: 评论
Information-density Masking Strategy for masked image modeling
Information-density Masking Strategy for Masked Image Modeli...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Zhu, He Chen, Yang Hu, Guyue Yu, Shan Chinese Acad Sci CASIA Inst Automat Brainnetome Ctr Natl Lab Pattern Recognit NLPR Beijing Peoples R China Univ Chinese Acad Sci UCAS Sch Future Technol Beijing Peoples R China Nanyang Technol Univ Sch Comp Sci & Engn Singapore Singapore Univ Chinese Acad Sci UCAS Sch Artificial Intelligence Beijing Peoples R China
Recent representation learning approaches mainly fall into two paradigms: contrastive learning (CL) and masked image modeling (MIM). Combining these two methods may boost the performance, but its learning process stil... 详细信息
来源: 评论
When masked image modeling Meets Source-free Unsupervised Domain Adaptation: Dual-Level masked Network for Semantic Segmentation  23
When Masked Image Modeling Meets Source-free Unsupervised Do...
收藏 引用
31st ACM International Conference on Multimedia (MM)
作者: Li, Gang Ma, Xianzheng Wang, Zhao Li, Hao Zhang, Qifei Wu, Chao Zhejiang Univ Ningbo Peoples R China Shanghai AI Lab Shanghai Peoples R China
Source-Free domain adaptive Semantic Segmentation (SFSS) aims to transfer knowledge from source domain to the target domain with only pre-trained source segmentation model and the unlabeled target dataset. Only a few ... 详细信息
来源: 评论
ATTENTION-GUIDED CONTRASTIVE masked image modeling FOR TRANSFORMER-BASED SELF-SUPERVISED LEARNING  30
ATTENTION-GUIDED CONTRASTIVE MASKED IMAGE MODELING FOR TRANS...
收藏 引用
30th IEEE International Conference on image Processing (ICIP)
作者: Zhan, Yucheng Zhao, Yucheng Luo, Chong Zhang, Yueyi Sun, Xiaoyan Univ Sci & Technol China Hefei Peoples R China Microsoft Res Asia Beijing Peoples R China
Self-supervised learning with vision transformer (ViT) has gained much attention recently. Most existing methods rely on either contrastive learning or masked image modeling. The former is suitable for global feature ... 详细信息
来源: 评论
SPARSE ANATOMICAL PROMPT SEMI-SUPERVISED LEARNING WITH masked image modeling FOR CBCT TOOTH SEGMENTATION  21
SPARSE ANATOMICAL PROMPT SEMI-SUPERVISED LEARNING WITH MASKE...
收藏 引用
21st IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Dai, Pengyu Ou, Yafei Yang, Yuqiao Liu, Yang Zhao, Yue Chongqing Univ Posts & Telecommun Sch Commun & Informat Engn Chongqing 400065 Peoples R China Tokyo Inst Technol Inst Innovat Res Yokohama Kanagawa 2268503 Japan Chongqing Med Univ Stomatol Hosp Chongqing 401147 Peoples R China Zhejiang Univ Sch Mech Engn Hangzhou 310058 Zhejiang Peoples R China
Accurate tooth identification and segmentation in Cone Beam Computed Tomography (CBCT) dental images can significantly enhance the efficiency and precesion of manual diagnoses performed by dentists. However, existing ... 详细信息
来源: 评论