咨询与建议

限定检索结果

文献类型

  • 49 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 81 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 77 篇 工学
    • 62 篇 计算机科学与技术...
    • 30 篇 电气工程
    • 7 篇 信息与通信工程
    • 7 篇 测绘科学与技术
    • 7 篇 生物医学工程(可授...
    • 6 篇 软件工程
    • 4 篇 控制科学与工程
    • 4 篇 环境科学与工程(可...
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 1 篇 机械工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 网络空间安全
  • 27 篇 医学
    • 18 篇 临床医学
    • 7 篇 特种医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 19 篇 理学
    • 9 篇 物理学
    • 7 篇 地球物理学
    • 3 篇 生物学
    • 2 篇 地理学
    • 1 篇 化学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 公共管理
  • 2 篇 农学
    • 1 篇 作物学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 81 篇 masked image mod...
  • 34 篇 self-supervised ...
  • 13 篇 vision transform...
  • 7 篇 deep learning
  • 6 篇 transformers
  • 6 篇 contrastive lear...
  • 5 篇 semantic segment...
  • 4 篇 representation l...
  • 4 篇 transformer
  • 4 篇 deepfake detecti...
  • 4 篇 feature extracti...
  • 4 篇 remote sensing
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 task analysis
  • 3 篇 image segmentati...
  • 3 篇 domain adaptatio...
  • 3 篇 visualization
  • 3 篇 vision transform...
  • 3 篇 computer vision

机构

  • 4 篇 univ chinese aca...
  • 3 篇 sichuan univ col...
  • 3 篇 univ chinese aca...
  • 2 篇 shanghai ai lab ...
  • 2 篇 natl univ def te...
  • 2 篇 univ sci & techn...
  • 2 篇 shanghai jiao to...
  • 2 篇 chinese acad sci...
  • 2 篇 huawei inc peopl...
  • 2 篇 peng cheng lab p...
  • 1 篇 hebei univ techn...
  • 1 篇 agcy sci technol...
  • 1 篇 nankai univ busi...
  • 1 篇 tianjin key lab ...
  • 1 篇 yunnan normal un...
  • 1 篇 peking univ peop...
  • 1 篇 hunan acad agr s...
  • 1 篇 minist nat resou...
  • 1 篇 duke univ durham...
  • 1 篇 sun yat sen univ...

作者

  • 4 篇 tian qi
  • 3 篇 xie lingxi
  • 3 篇 jiao jianbin
  • 2 篇 bai jinfeng
  • 2 篇 ye long
  • 2 篇 chen yang
  • 2 篇 ma xin
  • 2 篇 ji zhilong
  • 2 篇 liu chang
  • 2 篇 ye qixiang
  • 2 篇 tian yunjie
  • 1 篇 li yonghui
  • 1 篇 liu zihan
  • 1 篇 qiu xiaobin
  • 1 篇 guo jing
  • 1 篇 yan zhiyuan
  • 1 篇 bao jingjing
  • 1 篇 peng ying shu
  • 1 篇 wang yunhao
  • 1 篇 gao zuan

语言

  • 78 篇 英文
  • 3 篇 其他
检索条件"主题词=Masked Image Modeling"
81 条 记 录,以下是51-60 订阅
排序:
masked Autoencoders in Computer Vision: A Comprehensive Survey
收藏 引用
IEEE ACCESS 2023年 11卷 113560-113579页
作者: Zhou, Zexian Liu, Xiaojing Qinghai Univ Dept Comp Technol & Applicat Xining 810016 Peoples R China
masked autoencoders (MAE) is a deep learning method based on Transformer. Originally used for images, it has now been extended to video, audio, and some other temporal prediction tasks. In the field of computer vision... 详细信息
来源: 评论
Fast-iTPN: Integrally Pre-Trained Transformer Pyramid Network With Token Migration
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024年 第12期46卷 9766-9779页
作者: Tian, Yunjie Xie, Lingxi Qiu, Jihao Jiao, Jianbin Wang, Yaowei Tian, Qi Ye, Qixiang Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 101408 Peoples R China Huawei Inc Shenzhen 518129 Peoples R China Peng Cheng Lab Shenzhen 100013 Peoples R China
We propose integrally pre-trained transformer pyramid network (iTPN), towards jointly optimizing the network backbone and the neck, so that transfer gap between representation models and downstream tasks is minimal. i... 详细信息
来源: 评论
AMSC: Adaptive Masking and Structure-Constraint Learning for Domain Adaptive Semantic Segmentation Under Adverse Conditions
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2024年 31卷 181-185页
作者: Chen, Yang Shan, Liang Qu, Yi Zhang, Weilong Chang, Lu Nanjing Univ Sci & Technol Sch Automat Nanjing 210094 Peoples R China
Unsupervised domain adaptation (UDA) aims to enable autonomous vehicles to understand complex road information without semantic labels. However, traditional UDA methods face challenges under adverse conditions, leadin... 详细信息
来源: 评论
Context Autoencoder for Self-supervised Representation Learning
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2023年 第1期132卷 208-223页
作者: Chen, Xiaokang Ding, Mingyu Wang, Xiaodi Xin, Ying Mo, Shentong Wang, Yunhao Han, Shumin Luo, Ping Zeng, Gang Wang, Jingdong Peking Univ Beijing Peoples R China Univ Hong Kong Pok Fu Lam Hong Kong Peoples R China Univ Calif Berkeley Berkeley CA USA Baidu Beijing Peoples R China
We present a novel masked image modeling (MIM) approach, context autoencoder (CAE), for self-supervised representation pretraining. We pretrain an encoder by making predictions in the encoded representation space. The... 详细信息
来源: 评论
MFAE: masked Frequency Autoencoders for Domain Generalization Face Anti-Spoofing
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2024年 19卷 4058-4069页
作者: Zheng, Tianyi Li, Bo Wu, Shuang Wan, Ben Mu, Guodong Liu, Shice Ding, Shouhong Wang, Jia Shanghai Jiao Tong Univ Sch Elect Informat & Elect Engn Dept Elect Engn Shanghai 200240 Peoples R China Tencent YouTu Lab Shanghai 200233 Peoples R China
The generalizable face anti-spoofing (FAS) has attracted much attention recently. Even though many existing methods perform well under intra-domain settings, the model's performance in the unseen domain is not sat... 详细信息
来源: 评论
AST: Adaptive Self-supervised Transformer for optical remote sensing representation
收藏 引用
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 2023年 第1期200卷 41-54页
作者: He, Qibin Sun, Xian Yan, Zhiyuan Wang, Bing Zhu, Zicong Diao, Wenhui Yang, Michael Ying Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China Chinese Acad Sci Aerosp Informat Res Inst Key Lab Network Informat Syst Technol NIST Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100190 Peoples R China Univ Twente Fac Geoinformat Sci & Earth Observ ITC Enschede Netherlands
Due to the variation in spatial resolution and the diversity of object scales, the interpretation of optical remote sensing images is extremely challenging. Deep learning has become the mainstream solution to interpre... 详细信息
来源: 评论
Learning Features of Intra-Consistency and Inter-Diversity: Keys Toward Generalizable Deepfake Detection
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2023年 第3期33卷 1468-1480页
作者: Chen, Han Lin, Yuzhen Li, Bin Tan, Shunquan Shenzhen Univ Guangdong Key Lab Intelligent Informat Proc Shenzhen Key Lab Media Secur Shenzhen 518060 Peoples R China Shenzhen Univ Guangdong Lab Artificial Intelligence & Digital Ec Shenzhen 518060 Peoples R China
Public concerns about deepfake face forgery are continually rising in recent years. Most deepfake detection approaches attempt to learn discriminative features between real and fake faces through end-to-end trained de... 详细信息
来源: 评论
AWDepth: Monocular Depth Estimation for Adverse Weather via masked Encoding
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2024年 第9期20卷 10873-10882页
作者: Wang, Meng Qin, Yunchuan Li, Ruihui Liu, Zhizhong Tang, Zhuo Li, Kenli Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Peoples R China
Monocular depth estimation has made considerable advances under clear weather conditions. However, how to learn accurate scene depth under rain and fog conditions and alleviate the negative influence of occlusion, lig... 详细信息
来源: 评论
Generic-to-Specific Distillation of masked Autoencoders
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2024年 第9期34卷 8779-8793页
作者: Huang, Wei Peng, Zhiliang Dong, Li Wei, Furu Ye, Qixiang Jiao, Jianbin Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100049 Peoples R China Microsoft Res Beijing 100080 Peoples R China
To transfer the representation capacity of large pre-trained models to lightweight models, knowledge distillation has been widely explored. However, conventional single-stage distillation methods are prone to getting ... 详细信息
来源: 评论
Transferable adversarial masked self-distillation for unsupervised domain adaptation
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2023年 第6期9卷 6567-6580页
作者: Xia, Yuelong Yun, Li-Jun Yang, Chengfu Yunnan Normal Univ Sch Informat Sci & Technol Kunming 650500 Peoples R China Engn Res Ctr Comp Vis & Intelligent Control Techno Dept Educ Yunnan Prov Kunming 650500 Peoples R China
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a labeled source domain to a related unlabeled target domain. Most existing works focus on minimizing the domain discrepancy to learn global domain-... 详细信息
来源: 评论