咨询与建议

限定检索结果

文献类型

  • 73 篇 期刊文献
  • 48 篇 会议

馆藏范围

  • 121 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 115 篇 工学
    • 82 篇 计算机科学与技术...
    • 49 篇 电气工程
    • 14 篇 信息与通信工程
    • 13 篇 测绘科学与技术
    • 12 篇 软件工程
    • 11 篇 控制科学与工程
    • 11 篇 生物医学工程(可授...
    • 6 篇 环境科学与工程(可...
    • 5 篇 仪器科学与技术
    • 5 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 2 篇 交通运输工程
    • 2 篇 生物工程
    • 1 篇 动力工程及工程热...
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 农业工程
    • 1 篇 网络空间安全
  • 38 篇 医学
    • 24 篇 临床医学
    • 10 篇 特种医学
    • 7 篇 基础医学(可授医学...
  • 32 篇 理学
    • 11 篇 地球物理学
    • 10 篇 物理学
    • 6 篇 生物学
    • 5 篇 地理学
    • 2 篇 数学
    • 2 篇 化学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 3 篇 农学
    • 2 篇 作物学
  • 1 篇 教育学
    • 1 篇 体育学

主题

  • 121 篇 masked autoencod...
  • 34 篇 self-supervised ...
  • 12 篇 transformer
  • 10 篇 deep learning
  • 10 篇 feature extracti...
  • 9 篇 vision transform...
  • 9 篇 task analysis
  • 9 篇 training
  • 7 篇 transformers
  • 6 篇 contrastive lear...
  • 6 篇 image reconstruc...
  • 5 篇 anomaly detectio...
  • 5 篇 decoding
  • 5 篇 data models
  • 4 篇 graph neural net...
  • 4 篇 computational mo...
  • 4 篇 multimodal
  • 4 篇 point cloud comp...
  • 4 篇 unsupervised lea...
  • 3 篇 three-dimensiona...

机构

  • 2 篇 univ sci & techn...
  • 2 篇 chinese acad sci...
  • 2 篇 univ sci & techn...
  • 2 篇 xidian univ sch ...
  • 2 篇 microsoft res as...
  • 2 篇 south china univ...
  • 2 篇 univ hong kong p...
  • 2 篇 singapore inst t...
  • 2 篇 xidian univ sch ...
  • 2 篇 univ chinese aca...
  • 2 篇 univ massachuset...
  • 1 篇 southeast univ l...
  • 1 篇 xiamen univ sch ...
  • 1 篇 univ sci & techn...
  • 1 篇 henan polytech u...
  • 1 篇 university of sc...
  • 1 篇 north china univ...
  • 1 篇 bournemouth univ...
  • 1 篇 univ hong kong d...
  • 1 篇 univ chinese aca...

作者

  • 3 篇 liu wei
  • 2 篇 chen dongdong
  • 2 篇 song yan
  • 2 篇 zhang xixi
  • 2 篇 huang chao
  • 2 篇 chen dong
  • 2 篇 sadok samir
  • 2 篇 wang min
  • 2 篇 fang wei
  • 2 篇 ye yaowen
  • 2 篇 tao jianhua
  • 2 篇 xu yongshun
  • 2 篇 xia lianghao
  • 2 篇 mcloughlin ian
  • 2 篇 han shuo
  • 2 篇 xu ke
  • 2 篇 sun licai
  • 2 篇 li houqiang
  • 2 篇 rudolph yannick
  • 2 篇 leglaive simon

语言

  • 119 篇 英文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"主题词=Masked autoencoder"
121 条 记 录,以下是71-80 订阅
MaskRecon: High-quality human reconstruction via masked autoencoders using a single RGB-D image
收藏 引用
NEUROCOMPUTING 2024年 609卷
作者: Li, Xing Fan, Yangyu Guo, Zhe Rao, Zhibo Duan, Yu Liu, Shiya Northwestern Polytech Univ Sch Elect & Informat Xian 710129 Peoples R China Nanchang Hangkong Univ Sch Informat Engn Nanchang 330063 Peoples R China Northwestern Polytech Univ Sch Comp Sci Xian 710129 Peoples R China Content Prod Ctr Virtual Real Beijing 101318 Peoples R China
In this paper, we explore reconstructing high-quality clothed 3D humans from a single RGB-D image, assuming that virtual humans can be represented by front-view and back-view depths. Due to the scarcity of captured re... 详细信息
来源: 评论
LoMAE: Simple Streamlined Low-Level masked autoencoders for Robust, Generalized, and Interpretable Low-Dose CT Denoising
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2024年 第11期28卷 6815-6827页
作者: Wang, Dayang Han, Shuo Xu, Yongshun Wu, Zhan Zhou, Li Morovati, Bahareh Yu, Hengyong Univ Massachusetts Lowell Dept Elect & Comp Engn Lowell MA 01854 USA Southeast Univ Lab Image Sci & Technol Nanjing 210096 Peoples R China Southeast Univ Key Lab Comp Network & Informat Integrat Minist Educ Nanjing 210096 Peoples R China
Low-dose computed tomography (LDCT) offers reduced X-ray radiation exposure but at the cost of compromised image quality, characterized by increased noise and artifacts. Recently, transformer models emerged as a promi... 详细信息
来源: 评论
EXTENDING AUDIO masked autoencoderS TOWARD AUDIO RESTORATION
EXTENDING AUDIO MASKED AUTOENCODERS TOWARD AUDIO RESTORATION
收藏 引用
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)
作者: Zhong, Zhi Shi, Hao Hirano, Masato Shimada, Kazuki Tateishi, Kazuya Shibuya, Takashi Takahashi, Shusuke Mitsufuji, Yuki Sony Grp Corp Tokyo Japan Kyoto Univ Kyoto Japan Sony Res Kyoto Japan
Audio classification and restoration are among major downstream tasks in audio signal processing. However, restoration derives less of a benefit from pretrained models compared to the overwhelming success of pretraine... 详细信息
来源: 评论
Tackling Missing Modalities in Audio-Visual Representation Learning Using masked autoencoders  25
Tackling Missing Modalities in Audio-Visual Representation L...
收藏 引用
25th Interspeech Conference
作者: Chochlakis, Georgios Lavania, Chandrashekhar Mathur, Prashant Han, Kyu J. Univ Southern Calif Los Angeles CA 90007 USA AWS AI Labs Seattle WA USA Amazon Seattle WA USA
Audio-visual representations leverage information from both modalities to produce joint representations. Such representations have demonstrated their usefulness in a variety of tasks. However, both modalities incorpor... 详细信息
来源: 评论
LR-MAE: Locate while Reconstructing with masked autoencoders for Point Cloud Self-supervised Learning
LR-MAE: Locate while Reconstructing with Masked Autoencoders...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Ji, Huizhen Zha, Yaohua Liao, Qingmin Tsinghua Univ Tsinghua Shenzhen Int Grad Sch Shenzhen Peoples R China
As an efficient self-supervised pre-training approach, masked autoencoder (MAE) has shown promising improvement across various 3D point cloud understanding tasks. However, the pretext task of existing point-based MAE ... 详细信息
来源: 评论
Bootstrapped masked autoencoders for Vision BERT Pretraining  1
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: Dong, Xiaoyi Bao, Jianmin Zhang, Ting Chen, Dongdong Zhang, Weiming Yuan, Lu Chen, Dong Wen, Fang Yu, Nenghai Univ Sci & Technol China Hefei Peoples R China Microsoft Res Asia Beijing Peoples R China Microsoft Cloud AI Redmond WA 98052 USA
We propose bootstrapped masked autoencoders (BootMAE), a new approach for vision BERT pretraining. BootMAE improves the original masked autoencoders (MAE) with two core designs: 1) momentum encoder that provides onlin... 详细信息
来源: 评论
Unsupervised Pre-Training Using masked autoencoders for ECG Analysis
Unsupervised Pre-Training Using Masked Autoencoders for ECG ...
收藏 引用
2023 IEEE Biomedical Circuits and Systems Conference, BioCAS 2023
作者: Wang, Guoxin Wang, Qingyuan Iyer, Ganesh Neelakanta Nag, Avishek John, Deepu University College Dublin School of Electrical and Electronic Engineering Dublin 4 Ireland National University of Singapore Department of Computer Science Singapore
Unsupervised learning methods have become increasingly important in deep learning due to their demonstrated large utilization of datasets and higher accuracy in computer vision and natural language processing tasks. T... 详细信息
来源: 评论
SAGHOG: Self-supervised autoencoder for Generating HOG Features for Writer Retrieval  18th
SAGHOG: Self-supervised Autoencoder for Generating HOG Featu...
收藏 引用
18th International Conference on Document Analysis and Recognition (ICDAR)
作者: Peer, Marco Kleber, Florian Sablatnig, Robert TU Wien Comp Vis Lab Vienna Austria
This paper introduces Saghog, a self-supervised pretraining strategy for writer retrieval using HOG features of the binarized input image. Our preprocessing involves the application of the Segment Anything technique t... 详细信息
来源: 评论
Attentive Symmetric autoencoder for Brain MRI Segmentation  25th
Attentive Symmetric Autoencoder for Brain MRI Segmentation
收藏 引用
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
作者: Huang, Junjia Li, Haofeng Li, Guanbin Wan, Xiang Chinese Univ Hong Kong Shenzhen Res Inst Big Data Shenzhen Peoples R China Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou Peoples R China Pazhou Lab Guangzhou 510330 Peoples R China
Self-supervised learning methods based on image patch reconstruction have witnessed great success in training auto-encoders, whose pre-trained weights can be transferred to fine-tune other downstream tasks of image un... 详细信息
来源: 评论
Swin MAE: masked autoencoders for small datasets
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2023年 161卷 107037-107037页
作者: Xu, Zi'an Dai, Yin Liu, Fayu Chen, Weibing Liu, Yue Shi, Lifu Liu, Sheng Zhou, Yuhang Northeastern Univ Shenyang Peoples R China China Med Univ Shenyang Peoples R China Liaoning Jiayin Med Technol Co Shenyang Peoples R China
The development of deep learning models in medical image analysis is majorly limited by the lack of large -sized and well-annotated datasets. Unsupervised learning does not require labels and is more suitable for solv... 详细信息
来源: 评论