咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 5 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 36 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 26 篇 工学
    • 20 篇 计算机科学与技术...
    • 10 篇 电气工程
    • 3 篇 信息与通信工程
    • 3 篇 软件工程
    • 2 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 纺织科学与工程
  • 13 篇 理学
    • 7 篇 统计学(可授理学、...
    • 4 篇 数学
    • 4 篇 生物学
    • 2 篇 生态学
    • 1 篇 物理学
  • 3 篇 农学
  • 3 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 36 篇 matrix regressio...
  • 9 篇 face recognition
  • 4 篇 nuclear norm
  • 4 篇 admm
  • 4 篇 sparse represent...
  • 4 篇 low rank
  • 3 篇 low-rank
  • 2 篇 dimensionality r...
  • 2 篇 feature extracti...
  • 2 篇 classification
  • 2 篇 feature selectio...
  • 2 篇 locality constra...
  • 2 篇 face hallucinati...
  • 2 篇 position-patch
  • 1 篇 text document
  • 1 篇 alternating dire...
  • 1 篇 online update
  • 1 篇 causality
  • 1 篇 graph matrix
  • 1 篇 similarity measu...

机构

  • 2 篇 jiangnan univ sc...
  • 2 篇 nantong univ sch...
  • 2 篇 jiangnan univ ji...
  • 2 篇 nanjing univ sci...
  • 1 篇 nanjing univ pos...
  • 1 篇 wisconsin instit...
  • 1 篇 city univ hong k...
  • 1 篇 beijing jiaotong...
  • 1 篇 institute of adv...
  • 1 篇 china electric p...
  • 1 篇 department of el...
  • 1 篇 northeastern uni...
  • 1 篇 aarhus univ dept...
  • 1 篇 beijing jiaotong...
  • 1 篇 hangzhou dianzi ...
  • 1 篇 smithsonian trop...
  • 1 篇 univ macau zhuha...
  • 1 篇 tsinghua univ ts...
  • 1 篇 capital med univ...
  • 1 篇 city univ hong k...

作者

  • 4 篇 yang jian
  • 3 篇 qian jianjun
  • 3 篇 luo lei
  • 2 篇 zhang chao
  • 2 篇 xu yong
  • 2 篇 li huaxiong
  • 2 篇 chen xiuhong
  • 2 篇 zhao weihua
  • 2 篇 chen chunlin
  • 2 篇 wang ying
  • 2 篇 mi jian-xun
  • 2 篇 luo zhiheng
  • 1 篇 jiacheng zhuo
  • 1 篇 wang lei
  • 1 篇 lipeng zhu
  • 1 篇 nhat ho
  • 1 篇 jiang hua
  • 1 篇 xu tengteng
  • 1 篇 reuman daniel c.
  • 1 篇 li mingwei

语言

  • 35 篇 英文
  • 1 篇 其他
检索条件"主题词=Matrix Regression"
36 条 记 录,以下是1-10 订阅
排序:
matrix regression preserving projections for robust feature extraction
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2018年 161卷 35-46页
作者: Xie Luofeng Yin Ming Wang Ling Tan Feng Yin Guofu Sichuan Univ Sch Mfg Sci & Engn Chengdu 610065 Sichuan Peoples R China
Dimensionality reduction (DR) technique is a significant tool for feature extraction. In this paper, we propose an innovative two-dimensional (2D) algorithm for DR based on matrix regression model, termed matrix regre... 详细信息
来源: 评论
matrix regression heterogeneity analysis
收藏 引用
STATISTICS AND COMPUTING 2024年 第3期34卷 1-12页
作者: Zhang, Fengchuan Zhang, Sanguo Li, Shi-Ming Ren, Mingyang Univ Chinese Acad Sci Sch Math Sci Beijing Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing Peoples R China Capital Med Univ Beijing Tongren Hosp Beijing Tongren Eye Ctr Beijing Key Lab Ophthalmol & Visual Sci Beijing Peoples R China Shanghai Jiao Tong Univ Sch Math Sci Shanghai Peoples R China
The development of modern science and technology has facilitated the collection of a large amount of matrix data in fields such as biomedicine. matrix data modeling has been extensively studied, which advances from th... 详细信息
来源: 评论
Single Image Self-Learning Super-Resolution with Robust matrix regression
收藏 引用
AATCC JOURNAL OF RESEARCH 2021年 第1_SUPPL期8卷 135-142页
作者: Jian, Zhang Xu Tengteng Qian Jianjun Xiao, Yuchen Zhang, Heng Li, Hongran Li, Cunhua Jiangsu Ocean Univ Lianyungang Jiangsu Peoples R China China Univ Min & Technol Beijing Peoples R China Nanjing Univ Sci & Technol Nanjing Peoples R China
The similarity measure plays the key role in the self-learning framework for single image super-resolution. This paper involves matrix regression with properties of robustness and two-dimensional structure to measure ... 详细信息
来源: 评论
Image deblurring with matrix regression and gradient evolution
收藏 引用
PATTERN RECOGNITION 2012年 第6期45卷 2164-2179页
作者: Xiang, Shiming Meng, Gaofeng Wang, Ying Pan, Chunhong Zhang, Changshui Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100190 Peoples R China Tsinghua Univ Tsinghua Natl Lab Informat Sci & Technol TNList Dept Automat Beijing 100084 Peoples R China
This paper presents a supervised learning algorithm for image deblurring. The task is addressed into the conceptual framework of matrix regression and gradient evolution. Specifically, given pairs of blurred image pat... 详细信息
来源: 评论
Low-rank matrix regression for image feature extraction and feature selection
收藏 引用
INFORMATION SCIENCES 2020年 522卷 214-226页
作者: Yuan, Haoliang Li, Junyu Lai, Loi Lei Tang, Yuan Yan Guangdong Univ Technol Sch Automat Guangzhou Guangdong Peoples R China Univ Macau Zhuhai Sci & Technol Res Inst Macau Peoples R China UOW Coll Hong Kong Fac Sci & Technol Hong Kong Peoples R China
In many image processing and pattern recognition problems, the input data is commonly the images. The image could be represented as the matrix form. The natural structure information of the matrix is useful for data a... 详细信息
来源: 评论
Nonnegative spectral clustering and adaptive graph-based matrix regression for unsupervised image feature selection
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2021年 第21-23期80卷 32885-32904页
作者: Chen, Xiuhong Zhu, Xingyu Jiangnan Univ Sch Artificial Intelligence & Comp Sci Wuxi Jiangsu Peoples R China Jiangnan Univ Jiangsu Key Lab Media Design & Software Technol Wuxi Jiangsu Peoples R China
matrix regression model can directly take matrix data as input data, and its loss function is defined by left and right regression matrices. The spectral clustering-based matrix regression model can perform feature se... 详细信息
来源: 评论
Bilateral Two-Dimensional matrix regression Preserving Discriminant Embedding for Corrupted Image Recognition
收藏 引用
IEEE ACCESS 2019年 7卷 13803-13816页
作者: Zhang, Jianbo Wang, Jinkuan Li, Mingwei Northeastern Univ Sch Informat Sci & Engn Shenyang 110819 Liaoning Peoples R China Northeastern Univ Qinhuangdao Sch Math & Stat Qinhuangdao 066004 Peoples R China
Nuclear-norm-based matrix regression (NMR) methods have been successfully applied for the recognition of corrupted images. However, most of these methods do not consider the label information and are classified as uns... 详细信息
来源: 评论
Locality-Constrained Discriminative matrix regression for Robust Face Identification
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022年 第3期33卷 1254-1268页
作者: Zhang, Chao Li, Huaxiong Qian, Yuhua Chen, Chunlin Zhou, Xianzhong Nanjing Univ Dept Control & Syst Engn Nanjing 210093 Peoples R China Shanxi Univ Inst Big Data Sci & Ind Taiyuan 030006 Peoples R China Shanxi Univ Minist Educ Key Lab Computat Intelligence & Chinese Informat Taiyuan 030006 Peoples R China
regression-based methods have been widely applied in face identification, which attempts to approximately represent a query sample as a linear combination of all training samples. Recently, a matrix regression model b... 详细信息
来源: 评论
Nuclear norm-based matrix regression preserving embedding for face recognition
收藏 引用
NEUROCOMPUTING 2018年 311卷 279-290页
作者: Deng, Yang-Jun Li, Heng-Chao Wang, Qi Du, Qian Southwest Jiaotong Univ Sichuan Prov Key Lab Informat Coding & Transmiss Chengdu 611756 Sichuan Peoples R China Northwestern Polytech Univ Sch Comp Sci Xian 710072 Peoples R China Northwestern Polytech Univ Ctr OPT IMagery Anal & Learning OPTIMAL Xian 710072 Peoples R China Mississippi State Univ Dept Elect & Comp Engn Mississippi State MS 39762 USA
Recently, using linear reconstruction technique to construct intrinsic graph for projection-based dimensionality reduction (DR) has aroused broad interest in face recognition. However, current methods either lack robu... 详细信息
来源: 评论
Double fused Lasso penalized LAD for matrix regression
收藏 引用
APPLIED MATHEMATICS AND COMPUTATION 2019年 357卷 119-138页
作者: Li, Mei Kong, Lingchen Beijing Jiaotong Univ Dept Appl Math Beijing 100044 Peoples R China
More complex data are generated with a response on vector and matrix predictors in statistics and machine learning. Recently, Zhou and Li (2014) proposed matrix regression based on least squares (LS) method but they m... 详细信息
来源: 评论