咨询与建议

限定检索结果

文献类型

  • 2,048 篇 期刊文献
  • 754 篇 会议
  • 8 篇 学位论文

馆藏范围

  • 2,810 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,029 篇 工学
    • 1,490 篇 计算机科学与技术...
    • 688 篇 生物医学工程(可授...
    • 639 篇 电气工程
    • 204 篇 软件工程
    • 140 篇 信息与通信工程
    • 105 篇 控制科学与工程
    • 89 篇 机械工程
    • 88 篇 仪器科学与技术
    • 67 篇 电子科学与技术(可...
    • 24 篇 材料科学与工程(可...
    • 24 篇 交通运输工程
    • 23 篇 生物工程
    • 16 篇 光学工程
    • 12 篇 网络空间安全
  • 1,546 篇 医学
    • 799 篇 基础医学(可授医学...
    • 576 篇 特种医学
    • 368 篇 临床医学
    • 29 篇 中西医结合
    • 27 篇 公共卫生与预防医...
    • 26 篇 医学技术(可授医学...
  • 443 篇 理学
    • 235 篇 生物学
    • 157 篇 物理学
    • 61 篇 数学
    • 36 篇 化学
    • 5 篇 统计学(可授理学、...
  • 112 篇 管理学
    • 75 篇 管理科学与工程(可...
    • 34 篇 公共管理
    • 6 篇 图书情报与档案管...
  • 102 篇 农学
    • 10 篇 作物学
  • 29 篇 艺术学
    • 25 篇 美术学
  • 3 篇 法学
  • 3 篇 教育学
  • 2 篇 文学

主题

  • 2,810 篇 medical image se...
  • 433 篇 deep learning
  • 370 篇 medical imaging
  • 334 篇 computed tomogra...
  • 261 篇 cancer
  • 187 篇 image segmentati...
  • 168 篇 transformer
  • 163 篇 semi-supervised ...
  • 161 篇 radiation therap...
  • 132 篇 convolutional ne...
  • 127 篇 u-net
  • 116 篇 lungs
  • 116 篇 convolutional ne...
  • 113 篇 attention mechan...
  • 101 篇 image registrati...
  • 100 篇 dosimetry
  • 92 篇 anatomy
  • 86 篇 tissues
  • 81 篇 medical image re...
  • 81 篇 feature extracti...

机构

  • 19 篇 shandong technol...
  • 18 篇 sichuan univ col...
  • 18 篇 chinese acad sci...
  • 15 篇 nanjing univ sci...
  • 12 篇 university of wi...
  • 11 篇 huazhong univ sc...
  • 11 篇 cent south univ ...
  • 11 篇 ut southwestern ...
  • 10 篇 northeastern uni...
  • 10 篇 univ chinese aca...
  • 10 篇 univ oxford dept...
  • 10 篇 md anderson canc...
  • 10 篇 stanford univers...
  • 10 篇 shandong technol...
  • 10 篇 peng cheng lab p...
  • 10 篇 chinese univ hon...
  • 10 篇 memorial sloan k...
  • 9 篇 shanghai ai lab ...
  • 9 篇 southern univ sc...
  • 9 篇 shaanxi univ sci...

作者

  • 19 篇 d low
  • 18 篇 xia yong
  • 15 篇 li jinjiang
  • 15 篇 w lu
  • 15 篇 l xing
  • 14 篇 p keall
  • 13 篇 li yan
  • 13 篇 yang guang
  • 12 篇 wang yan
  • 12 篇 j yang
  • 11 篇 zhang shaoting
  • 11 篇 r jeraj
  • 11 篇 fu huazhu
  • 11 篇 j wang
  • 10 篇 hong qingqi
  • 10 篇 x li
  • 10 篇 wang wei
  • 10 篇 y shen
  • 10 篇 j lee
  • 10 篇 li wei

语言

  • 2,740 篇 英文
  • 56 篇 其他
  • 7 篇 法文
  • 4 篇 中文
  • 2 篇 德文
  • 1 篇 俄文
  • 1 篇 土耳其文
检索条件"主题词=Medical Image Segmentation"
2810 条 记 录,以下是1-10 订阅
排序:
medical image segmentation assisted with clinical inputs via language encoder in a deep learning framework
收藏 引用
MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2025年 第1期6卷
作者: Zhao, Hengrui Wang, Biling Mistry, Deepkumar Wang, Jing Dohopolski, Michael Yang, Daniel Lu, Weiguo Jiang, Steve Nguyen, Dan Univ Texas Southwestern Med Ctr Med Artificial Intelligence & Automat MAIA Lab Dallas TX 75390 USA Univ Texas Southwestern Med Ctr Dept Radiat Oncol Dallas TX 75390 USA
Introduction: Auto-segmentation of tumor volumes and organs at risk (OARs) is a critical step in cancer radiotherapy treatment planning, where rapid, precise adjustments to treatment plans are required to match the pa... 详细信息
来源: 评论
medical image segmentation Network Based on Dual-Encoder Interactive Fusion
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第7期15卷 3785-3785页
作者: Yang, Hong Fan, Yong Yang, Ping Southwest Univ Sci & Technol Sch Comp Sci & Technol Mianyang 621010 Peoples R China
Hybrid CNN-Transformer networks seek to merge the local feature extraction capabilities of CNNs with the long-range dependency modeling abilities of Transformers, aiming to simultaneously address both local details an... 详细信息
来源: 评论
medical image segmentation with hybrid neural networks
收藏 引用
PHYSICA SCRIPTA 2025年 第3期100卷 036001-036001页
作者: Li, Chuangwei Li, Ling-Fang Wang, Xiaojun Luo, Ming-Xing Southwest Jiaotong Univ Sch Informat Sci & Technol Chengdu 610031 Peoples R China Dublin City Univ Sch Elect Engn Dublin Ireland
Recent advancements in CNN and Transformer-based models have significantly advanced medical image segmentation. CNN-based models are less effective at capturing global contexts than Transformer-based models and Transf... 详细信息
来源: 评论
TBConvL-Net: A hybrid deep learning architecture for robust medical image segmentation
收藏 引用
PATTERN RECOGNITION 2025年 158卷
作者: Iqbal, Shahzaib Khan, Tariq M. Naqvi, Syed S. Naveed, Asim Meijering, Erik Abasyn Univ Dept Elect Engn Islamabad Pakistan COMSATS Univ Islamabad Dept Elect & Comp Engn Islamabad Pakistan Univ New South Wales Sch Comp Sci & Engn Sydney Australia Univ Engn & Technol Lahore Dept Comp Sci & Engn Narowal Campus Lahore Pakistan
Deep learning has shown great potential for automated medical image segmentation to improve the precision and speed of disease diagnostics. However, the task presents significant difficulties due to variations in the ... 详细信息
来源: 评论
Dilated dendritic learning of global-local feature representation for medical image segmentation
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 264卷
作者: Liu, Zhipeng Song, Yaotong Yi, Junyan Zhang, Zhiming Omura, Masaaki Lei, Zhenyu Gao, Shangce Univ Toyama Fac Engn Toyama 9308555 Japan Beijing Univ Civil Engn & Architecture Dept Comp Sci & Technol Beijing 100044 Peoples R China
medical image segmentation serves as an important tool in the treatment of various medical diseases. However, achieving precise and efficient segmentation remains challenging due to the intricate structures and variat... 详细信息
来源: 评论
Dual stream fusion module integrating 2D and 3D for 3D semi-supervised medical image segmentation
收藏 引用
SIGNAL image AND VIDEO PROCESSING 2025年 第4期19卷 1-11页
作者: He, Zhiquan Ouyang, Yating Wen, Yang Shenzhen Univ Guangdong Prov Key Lab Intelligent Informat Proc Nanhai Blvd Shenzhen 518060 Peoples R China
Semi-supervised learning has proven effective in the challenging field of 3D medical image segmentation. However, existing methods typically focus solely on utilizing 3D features, which limits their ability to capture... 详细信息
来源: 评论
Cross-Modal Conditioned Reconstruction for Language-Guided medical image segmentation
收藏 引用
IEEE TRANSACTIONS ON medical IMAGING 2025年 第4期44卷 1821-1835页
作者: Huang, Xiaoshuang Li, Hongxiang Cao, Meng Chen, Long You, Chenyu An, Dong China Agr Univ Coll Informat & Elect Engn Beijing 100083 Peoples R China China Agr Univ Beijing Engn & Technol Res Ctr Internet Things Agr Beijing 100083 Peoples R China Peking Univ Sch Elect & Comp Engn Shenzhen 518055 Peoples R China Mohamed bin Zayed Univ Artificial Intelligence Dept Comp Vis Abu Dhabi U Arab Emirates Hong Kong Univ Sci & Technol Sch Engn Dept Comp Sci & Engn Hong Kong Peoples R China Yale Univ Dept Elect & Comp Engn New Haven CT 06520 USA
Recent developments underscore the potential of textual information in enhancing learning models for a deeper understanding of medical visual semantics. However, language-guided medical image segmentation still faces ... 详细信息
来源: 评论
Dynamic graph consistency and self-contrast learning for semi-supervised medical image segmentation
收藏 引用
NEURAL NETWORKS 2025年 184卷 107063页
作者: Li, Gang Xie, Jinjie Zhang, Ling Cheng, Guijuan Zhang, Kairu Bai, Mingqi Taiyuan Univ Technol Coll Software Taiyuan Peoples R China
Semi-supervised medical image segmentation endeavors to exploit a limited set of labeled data in conjunction with a substantial corpus of unlabeled data, with the aim of training models that can match or even exceed t... 详细信息
来源: 评论
DAUNet: A deformable aggregation UNet for multi-organ 3D medical image segmentation
收藏 引用
PATTERN RECOGNITION LETTERS 2025年 191卷 58-65页
作者: Liu, Qinghao Liu, Min Zhu, Yuehao Liu, Licheng Zhang, Zhe Wang, Yaonan Hunan Univ Coll Elect & Informat Engn Natl Engn Res Ctr Robot Visual Percept & Control T Changsha 410082 Hunan Peoples R China Hunan Univ Int Sci & Technol Innovat Cooperat Base Biomed Ima Changsha 410082 Hunan Peoples R China
medical image segmentation is a critical component of medical image analysis. However, due to the limitations in the size and shape of the receptive field, neural networks often struggle to adapt to segmentation targe... 详细信息
来源: 评论
Exploring refined boundaries and accurate pseudo-labels for semi-supervised medical image segmentation
收藏 引用
APPLIED INTELLIGENCE 2025年 第3期55卷 1-20页
作者: Ma, Xiaochen Li, Yanfeng Sun, Jia Chen, Houjin Ren, Yihan Chen, Ziwei Beijing Jiaotong Univ Sch Elect & Informat Engn Beijing 100044 Peoples R China
Due to the tedious and expensive nature of annotating data for medical image segmentation tasks, semi-supervised learning (SSL) methods utilizing a small amount of labeled data have gained widespread attention. Howeve... 详细信息
来源: 评论