咨询与建议

限定检索结果

文献类型

  • 643 篇 期刊文献
  • 105 篇 会议

馆藏范围

  • 748 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 679 篇 工学
    • 410 篇 计算机科学与技术...
    • 187 篇 电气工程
    • 81 篇 信息与通信工程
    • 60 篇 土木工程
    • 50 篇 石油与天然气工程
    • 49 篇 控制科学与工程
    • 45 篇 软件工程
    • 33 篇 动力工程及工程热...
    • 30 篇 机械工程
    • 24 篇 建筑学
    • 21 篇 力学(可授工学、理...
    • 21 篇 仪器科学与技术
    • 21 篇 环境科学与工程(可...
    • 20 篇 材料科学与工程(可...
    • 18 篇 电子科学与技术(可...
    • 11 篇 水利工程
    • 11 篇 交通运输工程
    • 9 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 5 篇 航空宇航科学与技...
  • 121 篇 管理学
    • 116 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 119 篇 理学
    • 56 篇 数学
    • 18 篇 物理学
    • 18 篇 化学
    • 12 篇 生物学
    • 9 篇 系统科学
    • 6 篇 地球物理学
  • 14 篇 医学
    • 6 篇 基础医学(可授医学...
  • 10 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 农学
  • 2 篇 艺术学
  • 1 篇 法学

主题

  • 748 篇 metaheuristic al...
  • 93 篇 optimization
  • 30 篇 feature selectio...
  • 28 篇 machine learning
  • 23 篇 global optimizat...
  • 21 篇 multi-objective ...
  • 21 篇 particle swarm o...
  • 19 篇 metaheuristics
  • 18 篇 deep learning
  • 18 篇 swarm intelligen...
  • 15 篇 heuristic algori...
  • 14 篇 artificial intel...
  • 13 篇 search problems
  • 12 篇 hybrid algorithm
  • 12 篇 differential evo...
  • 12 篇 genetic algorith...
  • 11 篇 search economics
  • 11 篇 convergence
  • 11 篇 genetic algorith...
  • 10 篇 structural optim...

机构

  • 8 篇 guangxi univ nat...
  • 7 篇 natl chung hsing...
  • 7 篇 guangxi key labs...
  • 6 篇 univ tabriz dept...
  • 6 篇 natl chung hsing...
  • 6 篇 ohio state univ ...
  • 4 篇 univ ulster sch ...
  • 4 篇 northeastern uni...
  • 4 篇 natl sun yat sen...
  • 4 篇 al ahliyya amman...
  • 4 篇 indian inst tech...
  • 3 篇 natl sun yat sen...
  • 3 篇 changjiang water...
  • 3 篇 iran univ sci & ...
  • 3 篇 shahid bahonar u...
  • 3 篇 natl chin yi uni...
  • 3 篇 univ erlangen nu...
  • 3 篇 duy tan univ ins...
  • 3 篇 changchun normal...
  • 3 篇 nanyang technol ...

作者

  • 16 篇 tsai chun-wei
  • 11 篇 zhou yongquan
  • 10 篇 siddique nazmul
  • 10 篇 luo qifang
  • 10 篇 adeli hojjat
  • 8 篇 kaveh ali
  • 7 篇 mustaffa zuriani
  • 7 篇 sulaiman mohd he...
  • 7 篇 talatahari siama...
  • 6 篇 mirjalili seyeda...
  • 5 篇 ezugwu absalom e...
  • 5 篇 azizi mahdi
  • 5 篇 chun-wei tsai
  • 5 篇 yang xin-she
  • 5 篇 deep kusum
  • 5 篇 abualigah laith
  • 5 篇 kaveh a.
  • 5 篇 stodola petr
  • 4 篇 lin chun-cheng
  • 4 篇 zubaidi salah l.

语言

  • 713 篇 英文
  • 23 篇 其他
  • 3 篇 中文
  • 2 篇 法文
  • 2 篇 土耳其文
检索条件"主题词=Metaheuristic algorithm"
748 条 记 录,以下是21-30 订阅
排序:
Artificial Protozoa Optimizer (APO): A novel bio-inspired metaheuristic algorithm for engineering optimization
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2024年 295卷
作者: Wang, Xiaopeng Snasel, Vaclav Mirjalili, Seyedali Pan, Jeng-Shyang Kong, Lingping Shehadeh, Hisham A. VSB Tech Univ Ostrava Fac Elect Engn & Comp Sci Ostrava 70800 Czech Republic Torrens Univ Australia Ctr Artificial Intelligence Res & Optimisat Brisbane 4006 Australia Nanjing Univ Informat Sci & Technol Sch Artificial Intelligence Nanjing 210044 Peoples R China Amman Arab Univ Coll Comp Sci & Informat Amman 11953 Jordan
This study proposes a novel artificial protozoa optimizer (APO) that is inspired by protozoa in nature. The APO mimics the survival mechanisms of protozoa by simulating their foraging, dormancy, and reproductive behav... 详细信息
来源: 评论
Design-Optimization of Conventional Steel Structures for Realization of the Sustainable Development Objectives Using metaheuristic algorithm
收藏 引用
BUILDINGS 2024年 第7期14卷 2028页
作者: Negarestani, Mohammad Nader Hajikandi, Hooman Fatehi-Nobarian, Bahador Sardroud, Javad Majrouhi Islamic Azad Univ Dept Civil Engn Kish Int Branch Kish Isl *** Iran Islamic Azad Univ Cent Tehran Branch Dept Civil Engn Tehran *** Iran Islamic Azad Univ Dept Civil Engn Aras Branch Jolfa *** Iran
The construction industry presents a significant environmental challenge due to its substantial environmental footprint, utilization of limited natural resources, and contribution to pollution and climate change. Addi... 详细信息
来源: 评论
Walrus optimizer: A novel nature-inspired metaheuristic algorithm
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 239卷
作者: Han, Muxuan Du, Zunfeng Yuen, Kum Fai Zhu, Haitao Li, Yancang Yuan, Qiuyu Tianjin Univ Sch Civil Engn State Key Lab Hydraul Engn Intelligent Construct & Tianjin 300354 Peoples R China Nanyang Technol Univ Sch Civil & Environm Engn Singapore 639798 Singapore Hebei Univ Engn Coll Civil Engn Handan 056038 Peoples R China
metaheuristic algorithms are intelligent optimization approaches that lead the searching procedure through utilizing exploitation and exploration. The increasing complexity of real-world optimization problem has promp... 详细信息
来源: 评论
Experimental study and numerical prediction of the bond-slip law for concrete elements strengthened with FRP using metaheuristic algorithm
收藏 引用
CONSTRUCTION AND BUILDING MATERIALS 2024年 411卷
作者: Aghabagloo, Mehdi Carreras, Laura Barahona, Mario Barris, Cristina Baena, Marta Univ Girona Polytech Sch AMADE Girona 17003 Spain
Modeling an accurate bond-slip model between concrete and reinforcement is a significant challenge in fiber reinforced polymer (FRP) strengthened reinforced concrete (RC). This paper presents a novel method for develo... 详细信息
来源: 评论
Plasma generation optimization: a new physically-based metaheuristic algorithm for solving constrained optimization problems
收藏 引用
ENGINEERING COMPUTATIONS 2021年 第4期38卷 1554-1606页
作者: Kaveh, Ali Akbari, Hossein Hosseini, Seyed Milad Iran Univ Sci & Technol Sch Civil Engn Tehran Iran
Purpose This paper aims to present a new physically inspired meta-heuristic algorithm, which is called Plasma Generation Optimization (PGO). To evaluate the performance and capability of the proposed method in compari... 详细信息
来源: 评论
Multi-satellite cooperative scheduling method for large-scale tasks based on hybrid graph neural network and metaheuristic algorithm
收藏 引用
ADVANCED ENGINEERING INFORMATICS 2024年 60卷
作者: Feng, Xiaoen Li, Yuqing Xu, Minqiang Harbin Inst Technol Deep Space Explorat Res Ctr Harbin 150001 Peoples R China
Traditional heuristic optimization algorithms are no longer applicable to the multiple satellites scheduling with large-scale tasks, as they are unable to provide satisfactory performance in terms of convergence and s... 详细信息
来源: 评论
A metaheuristic algorithm for model predictive control of the oil-cooled motor in hybrid electric vehicles
收藏 引用
ENERGY 2024年 295卷
作者: Liu, Jiangchuan Ma, Qixin Zhang, Quanchang Hunan Univ Res Ctr Adv Powertrain Technol Dept Energy & Power Engn Changsha 410082 Peoples R China
The current energy management methods for hybrid vehicles are primarily focused on matching the power flow between the engine and the motor. In order to further reduce overall energy consumption and extend the vehicle... 详细信息
来源: 评论
Energy-efficient routing protocol for underwater wireless sensor networks using a hybrid metaheuristic algorithm
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 第PartC期133卷
作者: Saemi, Behzad Goodarzian, Fariba Kavosh Inst Higher Educ Comp Dept Mahmood Abad Mazandaran Iran Heriot Watt Univ Edinburgh Business Sch EBS Riccarton EH14 4AS Currie Scotland Heriot Watt Univ Sch Social Sci Riccarton EH14 4AS Currie Scotland
Energy-efficient routing protocols for Underwater Wireless Sensor Networks (UWSNs) have become critical in recent years for the intelligent and reliable collection of data from the seas and oceans. UWSNs are a group o... 详细信息
来源: 评论
Optimal Stochastic Process Optimizer: A New metaheuristic algorithm With Adaptive Exploration-Exploitation Property
收藏 引用
IEEE ACCESS 2021年 9卷 108640-108664页
作者: Xu, Jiahong Xu, Lihong Tongji Univ Dept Elect & Informat Engn Shanghai 201804 Peoples R China
metaheuristic algorithms are constructed to solve optimization problems, but they cannot solve all the problems with best solutions. This work proposes a novel self-adaptive metaheuristic optimization algorithm, named... 详细信息
来源: 评论
A reinforcement learning-based metaheuristic algorithm for solving global optimization problems
收藏 引用
ADVANCES IN ENGINEERING SOFTWARE 2023年 第1期178卷
作者: Seyyedabbasi, Amir Istinye Univ Fac Engn & Nat Sci Software Engn Dept Istanbul Turkiye
The purpose of this study is to utilize reinforcement learning in order to improve the performance of the Sand Cat Swarm Optimization algorithm (SCSO). In this paper, we propose a novel algorithm for the solution of g... 详细信息
来源: 评论