咨询与建议

限定检索结果

文献类型

  • 492 篇 期刊文献
  • 170 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 666 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 473 篇 工学
    • 331 篇 计算机科学与技术...
    • 111 篇 电气工程
    • 68 篇 生物工程
    • 59 篇 生物医学工程(可授...
    • 38 篇 控制科学与工程
    • 22 篇 软件工程
    • 21 篇 信息与通信工程
    • 10 篇 材料科学与工程(可...
    • 9 篇 仪器科学与技术
    • 7 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 网络空间安全
  • 335 篇 理学
    • 241 篇 生物学
    • 82 篇 统计学(可授理学、...
    • 57 篇 数学
    • 21 篇 化学
    • 19 篇 系统科学
    • 7 篇 物理学
    • 5 篇 生态学
  • 109 篇 医学
    • 71 篇 基础医学(可授医学...
    • 39 篇 临床医学
    • 12 篇 公共卫生与预防医...
    • 10 篇 药学(可授医学、理...
  • 98 篇 农学
    • 14 篇 作物学
  • 49 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 8 篇 公共管理
  • 29 篇 经济学
    • 29 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 666 篇 microarray data
  • 103 篇 feature selectio...
  • 58 篇 gene selection
  • 50 篇 classification
  • 47 篇 gene expression
  • 33 篇 bioinformatics
  • 30 篇 clustering
  • 29 篇 cancer classific...
  • 23 篇 machine learning
  • 20 篇 genetic algorith...
  • 17 篇 support vector m...
  • 17 篇 biclustering
  • 16 篇 data mining
  • 16 篇 feature extracti...
  • 15 篇 gene ontology
  • 14 篇 cancer
  • 13 篇 differentially e...
  • 13 篇 breast cancer
  • 13 篇 genetic algorith...
  • 13 篇 gene expression ...

机构

  • 7 篇 jadavpur univ de...
  • 6 篇 univ rochester d...
  • 5 篇 hefei univ techn...
  • 4 篇 nehu it dept shi...
  • 4 篇 gimt ece dept kr...
  • 4 篇 chuzhou univ sch...
  • 4 篇 indian stat inst...
  • 4 篇 univ calcutta cs...
  • 3 篇 royal thai air f...
  • 3 篇 osaka prefecture...
  • 3 篇 res ctr comp sci...
  • 3 篇 osaka prefecture...
  • 3 篇 georgia inst tec...
  • 3 篇 mohamed boudiaf ...
  • 3 篇 mit dept elect e...
  • 3 篇 xiamen univ dept...
  • 3 篇 univ calcutta de...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 univ teknol mala...

作者

  • 11 篇 deris safaai
  • 9 篇 yoshioka michifu...
  • 9 篇 omatu sigeru
  • 9 篇 mohamad mohd sab...
  • 8 篇 saha goutam
  • 7 篇 wang aiguo
  • 7 篇 sarkar ram
  • 6 篇 an ning
  • 6 篇 yakovlev andrei
  • 6 篇 li wei
  • 6 篇 mandal sudip
  • 5 篇 xie weidong
  • 5 篇 dash rasmita
  • 5 篇 klebanov lev
  • 5 篇 pal rajat kumar
  • 5 篇 boongoen tossapo...
  • 4 篇 moorthy kohbalan
  • 4 篇 liu kun-hong
  • 4 篇 hong qingqi
  • 4 篇 chen guilin

语言

  • 638 篇 英文
  • 27 篇 其他
  • 1 篇 中文
检索条件"主题词=Microarray Data"
666 条 记 录,以下是431-440 订阅
排序:
BIOMARKER IDENTIFICATION IN BREAST CANCER: BETA-ADRENERGIC RECEPTOR SIGNALING AND PATHWAYS TO THERAPEUTIC RESPONSE
收藏 引用
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL 2013年 第7期6卷 e201303003页
作者: Kafetzopoulou, Liana E. Boocock, David J. Dhondalay, Gopal Krishna R. Powe, Desmond G. Ball, Graham R. Nottingham Trent Univ Sch Sci & Technol John Geest Canc Res Ctr Nottingham NGI 8NS England Univ Nottingham Nottingham Univ Hosp Trust Dept Cellular Pathol Nottingham NG7 2UH England
Recent preclinical studies have associated beta-adrenergic receptor (beta-AR) signaling with breast cancer pathways such as progression and metastasis. These findings have been supported by clinical and epidemiologica... 详细信息
来源: 评论
Gene classification for microarray data with multiple time measurements
收藏 引用
BMC BIOINFORMATICS 2008年 第SUPPL 7期9卷 P18-P18页
作者: Quiton, Jonathan Rinehart, Claire Chavarria-Smith, Joseph Rice, Nancy Western Kentucky Univ Dept Math Bowling Green KY 42101 USA Western Kentucky Univ Dept Biol Bowling Green KY 42101 USA
来源: 评论
Gene Expression data Classification by VVRKFA
收藏 引用
Procedia Technology 2012年 4卷 330-335页
作者: Santanu Ghorai Anirban Mukherjee Pranab K. Dutta Deptt. of AEIE Heritage Institute of TechnologyChowabaga Road Anandapur East Kolkata-700107W. B.India Deptt. of Electrical Engineering Indian Institute of Technology Kharagpu Kharagpur-721302W.B.India
An efficient approach of cancer classification using microarray expression data by vector-valued regularized kernel function approximation (VVRKFA) method is presented in a true computer aided diagnosis framework. A f... 详细信息
来源: 评论
A Comparison Of Validation Indices For Evaluation Of Clustering Results Of DNA microarray data
A Comparison Of Validation Indices For Evaluation Of Cluster...
收藏 引用
The 2nd International Conference on Bioinformatics and Biomedical Engineering(iCBBE 2008)(第二届生物信息与生物医学工程国际会议)
作者: Suzana Loshkovska Blagoj Ristevski Sasho Dzeroski Ivica Slavkov Department of Computer Science and Informatics Faculty of Electrical Eng. and Information Technologi Department of Knowledge Technologies Jozef Stefan Institute Ljubljana Slovenia
In this paper we assess the clustering results of gene expression (microarray) data by using different validation indices. We perform k-means clustering and evaluate the results by using three validation indices: Silh... 详细信息
来源: 评论
Identifying combinatorial transcription factor interactions with microarray data and ChIP-chip data
Identifying combinatorial transcription factor interactions ...
收藏 引用
The 2nd International Conference on Bioinformatics and Biomedical Engineering(iCBBE 2008)(第二届生物信息与生物医学工程国际会议)
作者: Ting Chen Feng Li Dept. of Electrical Engineering Fudan University Shanghai China
Combinatorial interactions of transcription factors play a key role in modulating transcriptional regulatory mechanisms in Saccharomyces cerevisiae. Here we apply correlation analysis to search potential combinatorial... 详细信息
来源: 评论
Analysis of Gene Network in MCF-7 Human Breast Cancer Cells
Analysis of Gene Network in MCF-7 Human Breast Cancer Cells
收藏 引用
International Conference on Control, Automation and Systems
作者: Ryohei Shiraishi Takashi Nakakuki Major in Mechanical Engineering Kogakuin University Department of Mechanical Systems Engineering Kogakuin University
Recent technological progress on high-throughput measurements for gene expression such as microarray analysis enables us to collect time-series gene expression data for each of tens of thousands of genes. Although a g... 详细信息
来源: 评论
data integration model for cancer subtype identification using Kernel Dimensionality Reduction-Support Vector Machine (KDR-SVM)
Data integration model for cancer subtype identification usi...
收藏 引用
International Conference on Computer Sciences and Convergence Information Technology (ICCIT)
作者: Ito Wasito Aulia N. Istiqlal Indra Budi Faculty of Computer Science Universitas Indonesia Depok Indonesia
In this paper, an integration model of cancer patients data types such as microarray DNA and clinical data will be experimentally explored. The data of integration will be used for cancer subtype identification using ... 详细信息
来源: 评论
Predicting Prostate Cancer Progression with Penalized Logistic Regression Model Based on Co-expressed Genes
Predicting Prostate Cancer Progression with Penalized Logist...
收藏 引用
International Conference on Biomedical Engineering and Informatics
作者: Hongya Zhao Songru Qi Qi Dong Industrial center Shenzhen Polytechnic Shenzhen China Department of Muscle Biochemistry Mudanjiang Medical Colledge Mudanjiang China
The prediction of cancer progression is one of the most challenging problems in oncology. In this paper, we apply the penalized logistic model to microarray data in combination with co-expression genes to identify pat... 详细信息
来源: 评论
A Integrated Computational Approach for Protein Sub-network Detection in Parkinson's Disease
A Integrated Computational Approach for Protein Sub-network ...
收藏 引用
2010 3rd International Conference on Computer and Electrical Engineering(ICCEE 2010)
作者: Yue Huang Yunying Huang Institute of Signal and Information Processing Department of Communication Engineering Xiamen University Department of Electronic Engineering Xiamen University
Parkinson's disease (PD) is a typical case of neurodegenerative disorder, which often impairs the sufferer's motor skills, speech, and other functions. Combination of protein-protein interaction (PPI) network ... 详细信息
来源: 评论
A Weighted Principal Component Analysis and Its Application to Gene Expression data
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2011年 第1期8卷 246-252页
作者: da Costa, Joaquim F. Pinto Alonso, Hugo Roque, Luis Univ Porto Fac Ciencias Dept Matemat P-4169007 Oporto Portugal Univ Porto CMUP Ctr Matemat Oporto Portugal Univ Lusofona Porto Fac Econ & Gestao P-4000098 Oporto Portugal Univ Aveiro Dept Matemat P-3810193 Aveiro Portugal Univ Aveiro CIDMA Aveiro Portugal Inst Super Engn Porto Grp Invest Engn Conhecimento & Apoio Decisao GECA P-4200072 Oporto Portugal
In this work, we introduce in the first part new developments in Principal Component Analysis (PCA) and in the second part a new method to select variables (genes in our application). Our focus is on problems where th... 详细信息
来源: 评论