咨询与建议

限定检索结果

文献类型

  • 492 篇 期刊文献
  • 170 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 666 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 473 篇 工学
    • 331 篇 计算机科学与技术...
    • 111 篇 电气工程
    • 68 篇 生物工程
    • 59 篇 生物医学工程(可授...
    • 38 篇 控制科学与工程
    • 22 篇 软件工程
    • 21 篇 信息与通信工程
    • 10 篇 材料科学与工程(可...
    • 9 篇 仪器科学与技术
    • 7 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 网络空间安全
  • 335 篇 理学
    • 241 篇 生物学
    • 82 篇 统计学(可授理学、...
    • 57 篇 数学
    • 21 篇 化学
    • 19 篇 系统科学
    • 7 篇 物理学
    • 5 篇 生态学
  • 109 篇 医学
    • 71 篇 基础医学(可授医学...
    • 39 篇 临床医学
    • 12 篇 公共卫生与预防医...
    • 10 篇 药学(可授医学、理...
  • 98 篇 农学
    • 14 篇 作物学
  • 49 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 8 篇 公共管理
  • 29 篇 经济学
    • 29 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 666 篇 microarray data
  • 103 篇 feature selectio...
  • 58 篇 gene selection
  • 50 篇 classification
  • 47 篇 gene expression
  • 33 篇 bioinformatics
  • 30 篇 clustering
  • 29 篇 cancer classific...
  • 23 篇 machine learning
  • 20 篇 genetic algorith...
  • 17 篇 support vector m...
  • 17 篇 biclustering
  • 16 篇 data mining
  • 16 篇 feature extracti...
  • 15 篇 gene ontology
  • 14 篇 cancer
  • 13 篇 differentially e...
  • 13 篇 breast cancer
  • 13 篇 genetic algorith...
  • 13 篇 gene expression ...

机构

  • 7 篇 jadavpur univ de...
  • 6 篇 univ rochester d...
  • 5 篇 hefei univ techn...
  • 4 篇 nehu it dept shi...
  • 4 篇 gimt ece dept kr...
  • 4 篇 chuzhou univ sch...
  • 4 篇 indian stat inst...
  • 4 篇 univ calcutta cs...
  • 3 篇 royal thai air f...
  • 3 篇 osaka prefecture...
  • 3 篇 res ctr comp sci...
  • 3 篇 osaka prefecture...
  • 3 篇 georgia inst tec...
  • 3 篇 mohamed boudiaf ...
  • 3 篇 mit dept elect e...
  • 3 篇 xiamen univ dept...
  • 3 篇 univ calcutta de...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 univ teknol mala...

作者

  • 11 篇 deris safaai
  • 9 篇 yoshioka michifu...
  • 9 篇 omatu sigeru
  • 9 篇 mohamad mohd sab...
  • 8 篇 saha goutam
  • 7 篇 wang aiguo
  • 7 篇 sarkar ram
  • 6 篇 an ning
  • 6 篇 yakovlev andrei
  • 6 篇 li wei
  • 6 篇 mandal sudip
  • 5 篇 xie weidong
  • 5 篇 dash rasmita
  • 5 篇 klebanov lev
  • 5 篇 pal rajat kumar
  • 5 篇 boongoen tossapo...
  • 4 篇 moorthy kohbalan
  • 4 篇 liu kun-hong
  • 4 篇 hong qingqi
  • 4 篇 chen guilin

语言

  • 638 篇 英文
  • 27 篇 其他
  • 1 篇 中文
检索条件"主题词=Microarray Data"
666 条 记 录,以下是501-510 订阅
排序:
Performance comparisons between unsupervised clustering techniques for microarray data analysis on ovarian cancer
Performance comparisons between unsupervised clustering tech...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Meng-Hsiun Tsai Ching-Flao Lai Shin-Jr Lu Shun-Feng Su Natl Chung Hsing Univ Dept Management Informat Syst Taichung Taiwan Natl Chung Hsing Univ Inst Comp Sci Taichung Taiwan Natl Taiwan Univ Sci & Technol Dept Elect Engn Taipei Taiwan
In this paper we present some performance comparisons of several unsupervised clustering techniques include: Self-Organizing Map (SOM), Fuzzy C-means (FCM) and hierarchical clustering, and they are employed to analyze... 详细信息
来源: 评论
A robust procedure for Gaussian graphical model search from microarray data with p larger than n
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2006年 7卷 2621-2650页
作者: Castelo, Robert Roverato, Alberto Univ Pompeu Fabra Dept Ciencies Expt & Salut E-08003 Barcelona Spain Univ Bologna Dipartimento Sci Stat I-40126 Bologna Italy
Learning of large-scale networks of interactions from microarray data is an important and challenging problem in bioinformatics. A widely used approach is to assume that the available data constitute a random sample f... 详细信息
来源: 评论
A comparative study of classification methods for microarray data analysis  06
A comparative study of classification methods for microarray...
收藏 引用
Proceedings of the fifth Australasian conference on data mining and analystics - Volume 61
作者: Hong Hu Jiuyong Li Ashley Plank Hua Wang Grant Daggard University of Southern Queensland Toowoomba QLD Australia
In response to the rapid development of DNA microarray technology, many classification methods have been used for microarray classification. SVMs, decision trees, Bagging, Boosting and Random Forest are commonly used ... 详细信息
来源: 评论
An efficient gene selection algorithm based on mutual information
收藏 引用
NEUROCOMPUTING 2009年 第4-6期72卷 991-999页
作者: Cai, Ruichu Hao, Zhifeng Yang, Xiaowei Wen, Wen S China Univ Technol Sch Engn & Comp Sci Guangzhou 510640 Guangdong Peoples R China S China Univ Technol Coll Math Sci Guangzhou 510640 Guangdong Peoples R China
Gene selection, a significant preprocessing of the discriminant analysis of microarray data, is to select the most informative genes from the whole gene set. In this paper, an efficient mutual information-based gene s... 详细信息
来源: 评论
A maximally diversified multiple decision tree algorithm for microarray data classification  06
A maximally diversified multiple decision tree algorithm for...
收藏 引用
Proceedings of the 2006 workshop on Intelligent systems for bioinformatics - Volume 73
作者: Hong Hu Jiuyong Li Hua Wang Grant Daggard Mingren Shi University of Southern Queensland Toowoomba QLD Australia
We investigate the idea of using diversified multiple trees for microarray data classification. We propose an algorithm of Maximally Diversified Multiple Trees (MDMT), which makes use of a set of unique trees in the d... 详细信息
来源: 评论
EDGE3: A web-based solution for management and analysis of Agilent two color microarray experiments
收藏 引用
BMC BIOINFORMATICS 2009年 第1期10卷 1-10页
作者: Vollrath, Aaron L. Smith, Adam A. Craven, Mark Bradfield, Christopher A. Univ Wisconsin McArdle Lab Canc Res Sch Med & Publ Hlth Madison WI 53706 USA Univ Wisconsin Dept Biostat & Med Informat Madison WI 53706 USA Univ Wisconsin Dept Comp Sci Madison WI 53706 USA
Background: The ability to generate transcriptional data on the scale of entire genomes has been a boon both in the improvement of biological understanding and in the amount of data generated. The latter, the amount o... 详细信息
来源: 评论
Gene interaction - An evolutionary biclustering approach
收藏 引用
INFORMATION FUSION 2009年 第3期10卷 242-249页
作者: Mitra, Sushmita Das, Ranajit Banka, Haider Mukhopadhyay, Subhasis Indian Stat Inst Machine Intelligence Unit Kolkata 700108 India Indian Stat Inst Ctr Soft Comp Res Kolkata 700108 India Univ Calcutta Dept Biophys Mol Biol & Genet Bioinformat Ctr Kolkata 700009 India
DNA microarray experiments form a powerful tool for studying gene expression patterns, in large scale. Sharing of the regulatory mechanism among genes, in an organism, is predominantly responsible for their co-express... 详细信息
来源: 评论
Robust data imputation
收藏 引用
COMPUTATIONAL BIOLOGY AND CHEMISTRY 2009年 第1期33卷 7-13页
作者: Branden, Karlien Vanden Verboven, Sabine Univ Antwerp Dept Math Stat & Actuarial Sci B-2000 Antwerp Belgium Commiss European Communities Joint Res Ctr I-21020 Ispra Italy
Single imputation methods have been wide-discussed topics among researchers in the field of bioinformatics. One major shortcoming of methods proposed until now is the lack of robustness considerations. Like all data, ... 详细信息
来源: 评论
Use of Bayesian networks to probabilistically model and improve the likelihood of validation of microarray findings by RT-PCR
收藏 引用
JOURNAL OF BIOMEDICAL INFORMATICS 2009年 第2期42卷 287-295页
作者: English, Sangeeta B. Shih, Shou-Ching Ramoni, Marco F. Smith, Lois E. Butte, Atul J. Stanford Univ Sch Med Stanford Ctr Biomed Informat Res BMIR Stanford CA 94305 USA Beth Israel Deaconess Med Ctr Res N Dept Pathol Boston MA 02215 USA Childrens Hosp Boston Dept Ophthalmol Boston MA 02115 USA Harvard Univ Sch Med Harvard Partners Ctr Genet & Genom Boston MA 02115 USA Harvard Univ Sch Med Harvard MIT Div Hlth Sci & Technol Childrens Hosp Informat Program Boston MA 02115 USA
Though genome-wide technologies, such as microarrays, are widely used, data from these methods are considered noisy: there is still varied Success in downstream biological validation. We report a method that increases... 详细信息
来源: 评论
In Silico Evaluation of Predicted Regulatory Interactions in Arabidopsis thaliana
收藏 引用
BMC BIOINFORMATICS 2009年 第1期10卷 1-15页
作者: Nero, Damion Katari, Manpreet S. Kelfer, Jonathan Tranchina, Daniel Coruzzi, Gloria M. NYU Dept Biol Ctr Genom & Syst Biol New York NY 10003 USA NYU Courant Inst Math Sci New York NY 10003 USA
Background: Prediction of transcriptional regulatory mechanisms in Arabidopsis has become increasingly critical with the explosion of genomic data now available for both gene expression and gene sequence composition. ... 详细信息
来源: 评论