咨询与建议

限定检索结果

文献类型

  • 596 篇 期刊文献
  • 170 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 772 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 548 篇 工学
    • 385 篇 计算机科学与技术...
    • 134 篇 生物工程
    • 111 篇 电气工程
    • 59 篇 生物医学工程(可授...
    • 39 篇 控制科学与工程
    • 23 篇 软件工程
    • 21 篇 信息与通信工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 冶金工程
  • 435 篇 理学
    • 335 篇 生物学
    • 133 篇 统计学(可授理学、...
    • 60 篇 数学
    • 25 篇 化学
    • 19 篇 系统科学
    • 8 篇 物理学
    • 5 篇 生态学
  • 158 篇 医学
    • 75 篇 基础医学(可授医学...
    • 41 篇 临床医学
    • 18 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 119 篇 农学
    • 30 篇 作物学
  • 53 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 10 篇 公共管理
  • 30 篇 经济学
    • 30 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 772 篇 microarray data
  • 103 篇 feature selectio...
  • 60 篇 classification
  • 58 篇 gene selection
  • 48 篇 gene expression
  • 34 篇 bioinformatics
  • 31 篇 clustering
  • 30 篇 cancer classific...
  • 23 篇 machine learning
  • 20 篇 genetic algorith...
  • 17 篇 support vector m...
  • 17 篇 data mining
  • 17 篇 biclustering
  • 16 篇 feature extracti...
  • 16 篇 false discovery ...
  • 15 篇 cancer
  • 15 篇 gene ontology
  • 13 篇 differentially e...
  • 13 篇 breast cancer
  • 13 篇 genetic algorith...

机构

  • 7 篇 jadavpur univ de...
  • 6 篇 univ rochester d...
  • 5 篇 indian stat inst...
  • 5 篇 hefei univ techn...
  • 4 篇 nehu it dept shi...
  • 4 篇 gimt ece dept kr...
  • 4 篇 chuzhou univ sch...
  • 4 篇 univ calcutta cs...
  • 3 篇 royal thai air f...
  • 3 篇 osaka prefecture...
  • 3 篇 res ctr comp sci...
  • 3 篇 osaka prefecture...
  • 3 篇 georgia inst tec...
  • 3 篇 mohamed boudiaf ...
  • 3 篇 mit dept elect e...
  • 3 篇 xiamen univ dept...
  • 3 篇 univ calcutta de...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 univ teknol mala...

作者

  • 11 篇 deris safaai
  • 9 篇 yoshioka michifu...
  • 9 篇 omatu sigeru
  • 9 篇 mohamad mohd sab...
  • 8 篇 saha goutam
  • 7 篇 wang aiguo
  • 7 篇 sarkar ram
  • 6 篇 an ning
  • 6 篇 yakovlev andrei
  • 6 篇 li wei
  • 6 篇 mandal sudip
  • 5 篇 xie weidong
  • 5 篇 dash rasmita
  • 5 篇 klebanov lev
  • 5 篇 pal rajat kumar
  • 5 篇 boongoen tossapo...
  • 4 篇 moorthy kohbalan
  • 4 篇 liu kun-hong
  • 4 篇 hong qingqi
  • 4 篇 chen guilin

语言

  • 739 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"主题词=Microarray Data"
772 条 记 录,以下是651-660 订阅
排序:
Computing the maximum similarity bi-clusters of gene expression data
收藏 引用
BIOINFORMATICS 2007年 第1期23卷 50-56页
作者: Liu, Xiaowen Wang, Lusheng City Univ Hong Kong Dept Comp Sci Kowloon Hong Kong Peoples R China
Motivations: Bi-clustering is an important approach in microarray data analysis. The underlying bases for using bi-clustering in the analysis of gene expression data are (1) similar genes may exhibit similar behaviors... 详细信息
来源: 评论
VISDA:: an open-source caBIG™ analytical tool for data clustering and beyond
收藏 引用
BIOINFORMATICS 2007年 第15期23卷 2024-2027页
作者: Wang, Jiajing Li, Huai Zhu, Yitan Yousef, Malik Nebozhyn, Michael Showe, Michael Showe, Louise Xuan, Jianhua Clarke, Robert Wang, Yue Virginia Polytech Inst & State Univ Dept Elect & Comp Engn Arlington VA 22203 USA NIA NIH RRB Bioinformat Unit Baltimore MD 21224 USA Wistar Inst Anat & Biol Philadelphia PA 19104 USA Georgetown Univ Lombardi Comprehens Camc Ctr Washington DC 20057 USA Georgetown Univ Dept Oncol Washington DC 20057 USA
VISDA (Visual Statistical data Analyzer) is a caBIG (TM) analytical tool for cluster modeling, visualization and discovery that has met silver-level compatibility under the caBIG initiative. Being statistically princi... 详细信息
来源: 评论
Software development vis a vis collaboration in interdisciplinary research
收藏 引用
NEUROINFORMATICS 2007年 第3期5卷 176-177页
作者: Herskovits, Edward H. Univ Penn Dept Radiol Philadelphia PA 19104 USA
The ability to reanalyze microarray data would otentiate research explaining the molecular bases of embryological development, aging, cancer, and a plethora of other diseases. This potential results from the rapidly g... 详细信息
来源: 评论
Inferring gene regulatory networks using differential evolution with local search heuristics
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2007年 第4期4卷 634-647页
作者: Noman, Nasimul Iba, Hitoshi Univ Tokyo Grad Sch Frontier Sci Iba Lab Tokyo Japan Univ Dhaka Dept Comp Sci & Engn Dhaka 1000 Bangladesh
We present a memetic algorithm for evolving the structure of biomolecular interactions and inferring the effective kinetic parameters from the time-series data of gene expression using the decoupled S-system formalism... 详细信息
来源: 评论
CONTROL OF THE MEAN NUMBER OF FALSE DISCOVERIES, BONFERRONI AND STABILITY OF MULTIPLE TESTING
收藏 引用
ANNALS OF APPLIED STATISTICS 2007年 第1期1卷 179-190页
作者: Gordon, Alexander Glazko, Galina Qiu, Xing Yakovlev, Andrei Univ Rochester Dept Biostat & Computat Biol Rochester NY 14642 USA Univ N Carolina Dept Math & Stat Charlotte NC 28223 USA
The Bonferroni multiple testing procedure is commonly perceived as being overly conservative in large-scale Simultaneous testing situations such as those that arise in microarray data analysis. The objective of the pr... 详细信息
来源: 评论
Inferring gene regulatory networks from multiple data sources via a dynamic Bayesian network with structural EM
收藏 引用
4th International Workshop on data Integration in the Life Sciences
作者: Zhang, Yu Deng, Zhidong Jiang, Hongshan Jia, Peifa Tsinghua Univ Comp Sci & Technol Dept State Key Lab Intelligent Technol & Syst Beijing 100084 Peoples R China Tsinghua Univ Dept Comp Sci Beijing 100084 Peoples R China
Using our dynamic Bayesian network with structural Expectation Maximization (SEM-DBN), we develop a new framework to model gene regulatory network from both gene expression data and transcriptional factor binding site... 详细信息
来源: 评论
A multivariate extension of the gene set enrichment analysis
收藏 引用
Journal of Bioinformatics and Computational Biology 2007年 第5期5卷 1139-1153页
作者: Klebanov, Lev Glazko, Galina Salzman, Peter Yakovlev, Andrei Xiao, Yuanhui Department of Probability and Statistics Charles University Praha-8 CZ-18675 Sokolovska 83 Czech Republic Department of Biostatistics and Computational Biology University of Rochester Rochester NY 14642 601 Elmwood Avenue United States Department of Mathematics and Statistics Georgia State University Atlanta GA 30303 United States
A test-statistic typically employed in the gene set enrichment analysis (GSEA) prevents this method from being genuinely multivariate. In particular, this statistic is insensitive to changes in the correlation structu... 详细信息
来源: 评论
State space modeling of yeast gene expression dynamics
收藏 引用
Journal of Bioinformatics and Computational Biology 2007年 第1期5卷 31-46页
作者: Haavisto, Olli Hyötyniemi, Heikki Roos, Christophe Control Engineering Laboratory Helsinki University of Technology FI-02015 TKK Helsinki PO Box 5500 Finland Medicel Ltd. FI-00350 Helsinki Huopalahdentie 24 Finland
Combined interaction of all the genes forms a central part of the functional system of a cell. Thus, especially the data-based modeling of the gene expression network is currently one of the main challenges in the fie... 详细信息
来源: 评论
Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment
收藏 引用
BMC BIOINFORMATICS 2004年 第1期5卷 5-5页
作者: Konishi, T Akita Prefectural Univ Fac Bioresource Sci Akita 0100195 Japan
Background: To cancel experimental variations, microarray data must be normalized prior to analysis. Where an appropriate model for statistical data distribution is available, a parametric method can normalize a group... 详细信息
来源: 评论
GSMA: Gene Set Matrix Analysis, An Automated Method for Rapid Hypothesis Testing of Gene Expression data
收藏 引用
BIOINFORMATICS AND BIOLOGY INSIGHTS 2007年 第unknown期1卷 49-62页
作者: Cheadle, Chris Watkins, Tonya Fan, Jinshui Williams, Marc A. Georas, Steven Hall, John Rosen, Antony Barnes, Kathleen C. Johns Hopkins Univ Sch Med Div Allergy & Clin Immunol Genom Core Baltimore MD 21224 USA Univ Rochester Sch Med & Dent Div Pulm & Crit Care Med Rochester NY USA Johns Hopkins Univ Sch Med Div Rheumatol Baltimore MD 21224 USA
Background: microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The assignment of functional information to these complex patterns remains a challenging... 详细信息
来源: 评论