咨询与建议

限定检索结果

文献类型

  • 594 篇 期刊文献
  • 170 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 770 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 548 篇 工学
    • 385 篇 计算机科学与技术...
    • 134 篇 生物工程
    • 111 篇 电气工程
    • 59 篇 生物医学工程(可授...
    • 39 篇 控制科学与工程
    • 23 篇 软件工程
    • 21 篇 信息与通信工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 冶金工程
  • 433 篇 理学
    • 333 篇 生物学
    • 133 篇 统计学(可授理学、...
    • 60 篇 数学
    • 25 篇 化学
    • 19 篇 系统科学
    • 8 篇 物理学
    • 5 篇 生态学
  • 156 篇 医学
    • 73 篇 基础医学(可授医学...
    • 41 篇 临床医学
    • 18 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 117 篇 农学
    • 28 篇 作物学
  • 52 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 9 篇 公共管理
  • 30 篇 经济学
    • 30 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 770 篇 microarray data
  • 103 篇 feature selectio...
  • 60 篇 classification
  • 58 篇 gene selection
  • 48 篇 gene expression
  • 34 篇 bioinformatics
  • 31 篇 clustering
  • 30 篇 cancer classific...
  • 23 篇 machine learning
  • 20 篇 genetic algorith...
  • 17 篇 support vector m...
  • 17 篇 data mining
  • 17 篇 biclustering
  • 16 篇 feature extracti...
  • 16 篇 false discovery ...
  • 15 篇 cancer
  • 15 篇 gene ontology
  • 13 篇 differentially e...
  • 13 篇 breast cancer
  • 13 篇 genetic algorith...

机构

  • 7 篇 jadavpur univ de...
  • 6 篇 univ rochester d...
  • 5 篇 indian stat inst...
  • 5 篇 hefei univ techn...
  • 4 篇 nehu it dept shi...
  • 4 篇 gimt ece dept kr...
  • 4 篇 chuzhou univ sch...
  • 4 篇 univ calcutta cs...
  • 3 篇 royal thai air f...
  • 3 篇 osaka prefecture...
  • 3 篇 res ctr comp sci...
  • 3 篇 osaka prefecture...
  • 3 篇 georgia inst tec...
  • 3 篇 mohamed boudiaf ...
  • 3 篇 mit dept elect e...
  • 3 篇 xiamen univ dept...
  • 3 篇 univ calcutta de...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 univ teknol mala...

作者

  • 11 篇 deris safaai
  • 9 篇 yoshioka michifu...
  • 9 篇 omatu sigeru
  • 9 篇 mohamad mohd sab...
  • 8 篇 saha goutam
  • 7 篇 wang aiguo
  • 7 篇 sarkar ram
  • 6 篇 an ning
  • 6 篇 yakovlev andrei
  • 6 篇 li wei
  • 6 篇 mandal sudip
  • 5 篇 xie weidong
  • 5 篇 dash rasmita
  • 5 篇 klebanov lev
  • 5 篇 pal rajat kumar
  • 5 篇 boongoen tossapo...
  • 4 篇 moorthy kohbalan
  • 4 篇 liu kun-hong
  • 4 篇 hong qingqi
  • 4 篇 chen guilin

语言

  • 737 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"主题词=Microarray Data"
770 条 记 录,以下是61-70 订阅
排序:
Estimation of Missing Values Using Hybrid Fuzzy Clustering Mean and Majority Vote for microarray data
收藏 引用
Procedia Computer Science 2019年 163卷 145-153页
作者: Shamini Raja Kumaran Mohd Shahizan Othman Lizawati Mi Yusuf Arda Yunianta School of Computing Faculty Engineering Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia Faculty of Computing and Information Technology Rabigh King Abdulaziz University Jeddah Makkah Saudi Arabia
Rapid development in microarray experiments leads toward generating a large amount of genes expressions. Handling such a massive amount of gene expressions is a challenge using traditional methods especially multiple ... 详细信息
来源: 评论
A study on the relevance of feature selection methods in microarray data
收藏 引用
Open Bioinformatics Journal 2018年 第1期11卷 117-139页
作者: Sahu, Barnali Dehuri, Satchidananda Jagadev, Alok Department of Computer Science ITER Siksha ‘O’ Anusandhan University Bhubaneswar India Department of Information and Communication Technology Fakirmohan University Vyasa Vihar Balasore Odisha India School of Computer Engineering KIIT University Bhubaneswar Odisha India
Background: This paper studies the relevance of feature selection algorithms in microarray data for effective analysis. With no loss of generality, we present a list of feature selection algorithms and propose a gener... 详细信息
来源: 评论
CFSES optimization Feature Selection with neural network classification for microarray data analysis  2
CFSES optimization Feature Selection with neural network cla...
收藏 引用
2nd International Conference on data Science and Business Analytics (ICDSBA)
作者: Patra, Bichitrananda Bisoyi, Sudhansu Sekhar Siksha O Anusandhan Deemed Be Univ Dept Comp Sci & Engn ITER Bhubaneswar Odisha India KL Univ Dept CSE Vaddeswaram Guntur India
The DNA microarray data are enabling to measure the countenance levels of genes simultaneously, so long as an excessive for tuitous for cancer prediction. The number of features or genes is often more than thousands b... 详细信息
来源: 评论
Boosting Support Vector Machines for Imbalanced microarray data  3
Boosting Support Vector Machines for Imbalanced Microarray D...
收藏 引用
3rd INNS Conference on Big data and Deep Learning (INNS BDDL)
作者: Pratama, Risky Frasetio Wahyu Purnami, Santi Wulan Rahayu, Santi Puteri Inst Teknol Sepuluh Nopember Dept Stat Sukolilo 60111 Surabaya Indonesia
Nowadays, microarray data plays an important role in the detection and classification of almost all types of cancer tissue. The gene expression produced by microarray technology that carries the information from genes... 详细信息
来源: 评论
A New ECOC Algorithm for Multiclass microarray data Classification  24
A New ECOC Algorithm for Multiclass Microarray Data Classifi...
收藏 引用
24th International Conference on Pattern Recognition (ICPR)
作者: Sun, Mengxin Liu, Kunhong Hong, Qingqi Wang, Beizhan Xiamen Univ Software Sch Xiamen Peoples R China
The classification of multi-class microarray datasets is a hard task because of the small samples size in each class and the heavy overlaps among classes. To effectively solve these problems, we propose a novel Error ... 详细信息
来源: 评论
Robust gene selection methods using weighting schemes for microarray data analysis
收藏 引用
BMC BIOINFORMATICS 2017年 第1期18卷 1-15页
作者: Kang, Suyeon Song, Jongwoo Ewha Womans Univ Dept Stat Seoul South Korea
Background: A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identific... 详细信息
来源: 评论
microarray data Analysis of Yeast data using Sparse Non-Negative Matrix Factorization
Microarray Data Analysis of Yeast Data using Sparse Non-Nega...
收藏 引用
International Conference on Computational Science and Computational Intelligence (CSCI)
作者: Passi, Kalpdrum Draper, Paul Santala, Jillana Jain, Chakresh Kumar Laurentian Univ Dept Math & Comp Sci Sudbury ON Canada Jaypee Inst Informat Technol Dept Biotechnol Noida India
microarray expression data contains observations from thousands of genes across hundreds of samples. To extract meaningful information from these large datasets, the dimensionality reduction technique known as non-neg... 详细信息
来源: 评论
Using a grid computing-based meta-evolutionary mining approach for the microarray data cancer-categorization
收藏 引用
ENGINEERING COMPUTATIONS 2017年 第1期34卷 134-144页
作者: Chiang, Tai-Wei Chen, Ta-Cheng Natl Formosa Univ Dept Informat Management Yunlin Taiwan Asia Univ Dept M Commerce & Multimedia Applicat Taichung Taiwan
Purpose - The categorization response model through gene expression patterns turns into one of the most favorable utilizations of the microarray technology. In this study, the aim is to propose a grid computing-based ... 详细信息
来源: 评论
Prediction of NSCLC recurrence from microarray data with GEP
收藏 引用
IET SYSTEMS BIOLOGY 2017年 第3期11卷 77-86页
作者: Al-Anni, Russul Hou, Jingyu Abdu-aljabar, Rana Dhia'a Xiang, Yong Deakin Univ Sch Informat Technol Geelong Vic Australia Al Nahrain Univ Informat Engn Coll Baghdad Iraq
Lung cancer is one of the deadliest diseases in the world. Non-small cell lung cancer (NSCLC) is the most common and dangerous type of lung cancer. Despite the fact that NSCLC is preventable and curable for some cases... 详细信息
来源: 评论
A reductionist approach to extract robust molecular markers from microarray data series - Isolating markers to track osseointegration
收藏 引用
JOURNAL OF BIOMEDICAL INFORMATICS 2017年 68卷 104-111页
作者: Barik, Anwesha Banerjee, Satarupa Dhara, Santanu Chakravorty, Nishant Indian Inst Technol Sch Med Sci & Technol Kharagpur 721302 W Bengal India
Complexities in the full genome expression studies hinder the extraction of tracker genes to analyze the course of biological events. In this study, we demonstrate the applications of supervised machine learning metho... 详细信息
来源: 评论