咨询与建议

限定检索结果

文献类型

  • 146 篇 期刊文献
  • 47 篇 会议
  • 2 册 图书

馆藏范围

  • 195 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 138 篇 工学
    • 90 篇 计算机科学与技术...
    • 32 篇 生物工程
    • 28 篇 电气工程
    • 20 篇 生物医学工程(可授...
    • 6 篇 信息与通信工程
    • 6 篇 软件工程
    • 4 篇 控制科学与工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 环境科学与工程(可...
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
  • 116 篇 理学
    • 101 篇 生物学
    • 26 篇 统计学(可授理学、...
    • 22 篇 数学
    • 5 篇 化学
    • 3 篇 物理学
    • 2 篇 系统科学
  • 50 篇 医学
    • 22 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 5 篇 公共卫生与预防医...
    • 3 篇 药学(可授医学、理...
    • 2 篇 特种医学
  • 40 篇 农学
    • 8 篇 作物学
  • 7 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 2 篇 农林经济管理
    • 2 篇 公共管理
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 2 篇 法学
    • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 哲学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 195 篇 microarray data ...
  • 21 篇 feature selectio...
  • 14 篇 clustering
  • 14 篇 bioinformatics
  • 14 篇 gene expression
  • 13 篇 gene selection
  • 13 篇 cancer classific...
  • 10 篇 classification
  • 7 篇 biclustering
  • 6 篇 data mining
  • 6 篇 fuzzy clustering
  • 6 篇 false discovery ...
  • 5 篇 breast cancer
  • 4 篇 differentially e...
  • 4 篇 cancer
  • 4 篇 bidimensional cl...
  • 4 篇 microarray
  • 4 篇 bi-copam
  • 4 篇 gene expression ...
  • 3 篇 gene clustering

机构

  • 6 篇 yonsei univ dept...
  • 5 篇 city univ hong k...
  • 3 篇 univ sydney sch ...
  • 2 篇 univ tabriz fac ...
  • 2 篇 jozef stefan ins...
  • 2 篇 gachon univ med ...
  • 2 篇 jin wen inst tec...
  • 2 篇 univ minnesota d...
  • 2 篇 univ minnesota d...
  • 2 篇 univ minnesota d...
  • 2 篇 national health ...
  • 2 篇 city univ hong k...
  • 2 篇 brunel univ dept...
  • 2 篇 griffith univ sc...
  • 2 篇 indian stat inst...
  • 2 篇 florida int univ...
  • 2 篇 univ alexandria ...
  • 2 篇 nextbio cupertin...
  • 2 篇 cairo univ fac s...
  • 2 篇 indian stat inst...

作者

  • 7 篇 yan hong
  • 5 篇 park sanghyun
  • 4 篇 yoon youngmi
  • 4 篇 maji pradipta
  • 3 篇 shah ekta
  • 2 篇 nandi asoke k.
  • 2 篇 spyrou george
  • 2 篇 fa rui
  • 2 篇 lavrac nada
  • 2 篇 wang doris z.
  • 2 篇 abu-jamous basel
  • 2 篇 bien sangjay
  • 2 篇 verma yogesh kum...
  • 2 篇 trajkovski igor
  • 2 篇 simon richard
  • 2 篇 chen yi-ping pho...
  • 2 篇 jain renu
  • 2 篇 chetty madhu
  • 2 篇 mahfouz mohamed ...
  • 2 篇 li t

语言

  • 185 篇 英文
  • 8 篇 其他
  • 1 篇 法文
  • 1 篇 中文
检索条件"主题词=Microarray Data Analysis"
195 条 记 录,以下是121-130 订阅
排序:
Molecular differential analysis of uterine leiomyomas and leiomyosarcomas through weighted gene network and pathway tracing approaches
收藏 引用
SYSTEMS BIOLOGY IN REPRODUCTIVE MEDICINE 2021年 第3期67卷 209-220页
作者: Sahly, Nora Naif Banaganapalli, Babajan Sahly, Ahmed N. Aligiraigri, Ali H. Nasser, Khalidah K. Shinawi, Thoraia Mohammed, Arif Alamri, Abdulhakeem S. Bondagji, Nabeel Elango, Ramu Shaik, Noor Ahmad King Abdulaziz Univ Fac Med Dept Obstet & Gynecol Jeddah Saudi Arabia King Abdulaziz Univ Fac Med Dept Genet Med Jeddah Saudi Arabia King Abdulaziz Univ Princess Al Jawhara Al Brahim Ctr Excellence Res Jeddah Saudi Arabia King Faisal Specialist Hosp & Res Ctr Dept Neurosci Jeddah Saudi Arabia King Abdulaziz Univ Hosp Dept Hematol Jeddah Saudi Arabia King Abdulaziz Univ Fac Appl Med Sci Dept Med Lab Technol Jeddah Saudi Arabia Univ Jeddah Coll Sci Dept Biol Jeddah Saudi Arabia Taif Univ Coll Appl Med Sci Dept Clin Labs Sci At Taif Saudi Arabia Taif Univ Ctr Biomed Sci Res CBSR Deanship Sci Res At Taif Saudi Arabia
Uterine smooth muscular neoplastic growths like benign leiomyomas (UL) and metastatic leiomyosarcomas (ULMS) share similar clinical symptoms, radiological and histological appearances making their clinical distinction... 详细信息
来源: 评论
A statistical framework for expression-based molecular classification in cancer
收藏 引用
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY 2002年 第4期64卷 717-736页
作者: Parmigiani, G Garrett, ES Anbazhagan, R Gabrielson, E Johns Hopkins Univ Sch Med Div Oncol & Baltimore Baltimore MD 21205 USA
Genome-wide measurement of gene expression is a promising approach to the identification of subclasses of cancer that are currently not differentiable, but potentially biologically heterogeneous. This type of molecula... 详细信息
来源: 评论
Mathematical modelling in the post-genome era: understanding genome expression and regulation - a system theoretic approach
收藏 引用
BIOSYSTEMS 2002年 第1期65卷 1-18页
作者: Wolkenhauer, O Univ Manchester Control Syst Ctr Dept Elect Engn & Elect Dept Biomol Sci Manchester M60 1QD Lancs England
This paper introduces a mathematical framework for modelling genome expression and regulation. Starting with a philosophical foundation, causation is identified as the principle of explanation of change in the realm o... 详细信息
来源: 评论
microarray analysis using bioinformatics analysis audit trails (BAATs)
收藏 引用
COMPTES RENDUS BIOLOGIES 2003年 第10-11期326卷 1083-1087页
作者: Bellgard, M Hunter, A Kenworthy, W Murdoch Univ Ctr Bioinformat & Biol Comp Perth WA 6150 Australia
Bioinformatics analysis plays an integrative role in genomics and functional genomics. The ability to conduct quality managed, hypothesis-driven bioinformatics analysis with the plethora of data available is mandatory... 详细信息
来源: 评论
data-dependent kernel machines for microarray data classification
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2007年 第4期4卷 583-595页
作者: Xiong, Huilin Zhang, Ya Chen, Xue-Wen Univ Kansas Dept Elect Engn & Comp Sci Lawrence KS 66045 USA Shanghai Jiao Tong Univ Dept Automat Shanghai 200240 Peoples R China
One important application of gene expression analysis is to classify tissue samples according to their gene expression levels. Gene expression data are typically characterized by high dimensionality and small sample s... 详细信息
来源: 评论
Identification of potential biomarkers from microarray experiments using multiple criteria optimization
收藏 引用
CANCER MEDICINE 2013年 第2期2卷 253-265页
作者: Sanchez-Pena, Matilde L. Isaza, Clara E. Perez-Morales, Jaileene Rodriguez-Padilla, Cristina Castro, Jose M. Cabrera-Rios, Mauricio Univ Puerto Rico Mayaguez Dept Ind Engn Bio IE Lab Mayaguez PR 00680 USA Univ Autonoma Nuevo Leon Immunol & Virol Lab Monterrey Mexico Ohio State Univ Columbus OH 43210 USA
microarray experiments are capable of determining the relative expression of tens of thousands of genes simultaneously, thus resulting in very large databases. The analysis of these databases and the extraction of bio... 详细信息
来源: 评论
Using uncorrelated discriminant analysis for tissue classification with gene expression data
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2004年 第4期1卷 181-190页
作者: Ye, JP Li, T Xiong, T Janardan, R Univ Minnesota Dept Comp Sci & Engn Minneapolis MN 55455 USA Florida Int Univ Sch Comp Sci Miami FL 33199 USA Univ Minnesota Dept Elect & Comp Engn Minneapolis MN 55455 USA
The classification of tissue samples based on gene expression data is an important problem in medical diagnosis of diseases such as cancer. In gene expression data, the number of genes is usually very high (in the tho... 详细信息
来源: 评论
OVA scheme vs. single machine approach in feature selection for microarray datasets
收藏 引用
6th Industrial Conference on data Mining (ICDM 2006)
作者: Ooi, Chia Huey Chetty, Madhu Teng, Shyh Wei Monash Univ Gippsland Sch Informat Technol Churchill Vic 3842 Australia
The large number of genes in microarray data makes feature selection techniques more crucial than ever. From rank-based filter techniques to classifier-based wrapper techniques, many studies have devised their own fea... 详细信息
来源: 评论
Mining Breast Cancer Genetic data
Mining Breast Cancer Genetic Data
收藏 引用
9th International Conference on Natural Computation (ICNC)
作者: Mansour, Nashat Zardout, Rouba El-Sibai, Mirvat Lebanese Amer Univ Dept Comp Sci & Math Beirut Lebanon Lebanese Amer Univ Dept Nat Sci Beirut Lebanon
Analyzing breast cancer gene expression data is a very challenging problem due to the large amount of genes examined. Computational techniques have proved reliable to make sense of large amounts of data like the data ... 详细信息
来源: 评论
Restricted Boltzmann Machines for Unsupervised Feature Selection with Partial Least Square Feature Extractor for microarray datasets  9
Restricted Boltzmann Machines for Unsupervised Feature Selec...
收藏 引用
9th International Conference on Advanced Computer Science and Information Systems (ICACSIS)
作者: Sutawika, Lintang Adyuta Wasito, Ito Univ Indonesia Fac Comp Sci Depok Indonesia
Feature selection is a key component in microarray data analysis. This is due to the fact that microarray datasets consists of features that are far exceed the number of instances. High dimensional data are also known... 详细信息
来源: 评论