咨询与建议

限定检索结果

文献类型

  • 146 篇 期刊文献
  • 47 篇 会议
  • 2 册 图书

馆藏范围

  • 195 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 138 篇 工学
    • 90 篇 计算机科学与技术...
    • 32 篇 生物工程
    • 28 篇 电气工程
    • 20 篇 生物医学工程(可授...
    • 6 篇 信息与通信工程
    • 6 篇 软件工程
    • 4 篇 控制科学与工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 环境科学与工程(可...
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
  • 116 篇 理学
    • 101 篇 生物学
    • 26 篇 统计学(可授理学、...
    • 22 篇 数学
    • 5 篇 化学
    • 3 篇 物理学
    • 2 篇 系统科学
  • 50 篇 医学
    • 22 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 5 篇 公共卫生与预防医...
    • 3 篇 药学(可授医学、理...
    • 2 篇 特种医学
  • 40 篇 农学
    • 8 篇 作物学
  • 7 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 2 篇 农林经济管理
    • 2 篇 公共管理
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 2 篇 法学
    • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 哲学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 195 篇 microarray data ...
  • 21 篇 feature selectio...
  • 14 篇 clustering
  • 14 篇 bioinformatics
  • 14 篇 gene expression
  • 13 篇 gene selection
  • 13 篇 cancer classific...
  • 10 篇 classification
  • 7 篇 biclustering
  • 6 篇 data mining
  • 6 篇 fuzzy clustering
  • 6 篇 false discovery ...
  • 5 篇 breast cancer
  • 4 篇 differentially e...
  • 4 篇 cancer
  • 4 篇 bidimensional cl...
  • 4 篇 microarray
  • 4 篇 bi-copam
  • 4 篇 gene expression ...
  • 3 篇 gene clustering

机构

  • 6 篇 yonsei univ dept...
  • 5 篇 city univ hong k...
  • 3 篇 univ sydney sch ...
  • 2 篇 univ tabriz fac ...
  • 2 篇 jozef stefan ins...
  • 2 篇 gachon univ med ...
  • 2 篇 jin wen inst tec...
  • 2 篇 univ minnesota d...
  • 2 篇 univ minnesota d...
  • 2 篇 univ minnesota d...
  • 2 篇 national health ...
  • 2 篇 city univ hong k...
  • 2 篇 brunel univ dept...
  • 2 篇 griffith univ sc...
  • 2 篇 indian stat inst...
  • 2 篇 florida int univ...
  • 2 篇 univ alexandria ...
  • 2 篇 nextbio cupertin...
  • 2 篇 cairo univ fac s...
  • 2 篇 indian stat inst...

作者

  • 7 篇 yan hong
  • 5 篇 park sanghyun
  • 4 篇 yoon youngmi
  • 4 篇 maji pradipta
  • 3 篇 shah ekta
  • 2 篇 nandi asoke k.
  • 2 篇 spyrou george
  • 2 篇 fa rui
  • 2 篇 lavrac nada
  • 2 篇 wang doris z.
  • 2 篇 abu-jamous basel
  • 2 篇 bien sangjay
  • 2 篇 verma yogesh kum...
  • 2 篇 trajkovski igor
  • 2 篇 simon richard
  • 2 篇 chen yi-ping pho...
  • 2 篇 jain renu
  • 2 篇 chetty madhu
  • 2 篇 mahfouz mohamed ...
  • 2 篇 li t

语言

  • 185 篇 英文
  • 8 篇 其他
  • 1 篇 法文
  • 1 篇 中文
检索条件"主题词=Microarray Data analysis"
195 条 记 录,以下是31-40 订阅
排序:
Inferring Large-Scale Gene Regulatory Networks Using a Randomized Algorithm Based on Singular Value Decomposition
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019年 第6期16卷 1997-2008页
作者: Fan, Anjing Wang, Haitao Xiang, Hua Zou, Xiufen Wuhan Univ Sch Math & Stat Wuhan 430072 Peoples R China
Reconstructing large-scale gene regulatory networks (GRNs) is a challenging problem in the field of computational biology. Various methods for inferring GRNs have been developed, but they fail to accurately infer GRNs... 详细信息
来源: 评论
DK-means: a deterministic K-means clustering algorithm for gene expression analysis
收藏 引用
PATTERN analysis AND APPLICATIONS 2019年 第2期22卷 649-667页
作者: Jothi, R. Mohanty, Sraban Kumar Ojha, Aparajita Pandit Deendayal Petr Univ Sch Technol Dept Comp Engn Gandhinagar India Indian Inst Informat Technol Design & Mfg Jabalpu Jabalpur Madhya Pradesh India
Clustering has been widely applied in interpreting the underlying patterns in microarray gene expression profiles, and many clustering algorithms have been devised for the same. K-means is one of the popular algorithm... 详细信息
来源: 评论
Identifying Cancer Subnetwork Markers Using Game Theory Method
Identifying Cancer Subnetwork Markers Using Game Theory Meth...
收藏 引用
International Conference on Biomedical and Health Informatics (ICBHI)
作者: Farahmand, Saman Goliaei, Sama Kashani, Zahra Razaghi Moghadam Farahmand, Sina Univ Tehran Network Sci & Technol Dept Res Lab Computat Biol Tehran Iran Univ Tehran Life Sci Engn Dept Tehran Iran IIT Lab Neural Engn Res Biomed Engn Dept Chicago IL 60616 USA
In this paper, a novel game theory method is proposed to identify subnetwork markers by integrating gene expression profile and protein-protein interaction network. The proposed method has been evaluated on different ... 详细信息
来源: 评论
pwrEWAS: a user-friendly tool for comprehensive power estimation for epigenome wide association studies (EWAS)
收藏 引用
BMC BIOINFORMATICS 2019年 第1期20卷 218-218页
作者: Graw, Stefan Henn, Rosalyn Thompson, Jeffrey A. Koestler, Devin C. Univ Kansas Med Ctr Dept Biostat & Data Sci Kansas City KS 66103 USA Univ Kansas Med Ctr Dept Canc Biol Kansas City KS 66103 USA
BackgroundWhen designing an epigenome-wide association study (EWAS) to investigate the relationship between DNA methylation (DNAm) and some exposure(s) or phenotype(s), it is critically important to assess the sample ... 详细信息
来源: 评论
Correlation feature selection based improved-Binary Particle Swarm Optimization for gene selection and cancer classification
收藏 引用
APPLIED SOFT COMPUTING 2018年 62卷 203-215页
作者: Jain, Indu Jain, Vinod Kumar Jain, Renu Jiwaji Univ Sch Math & Allied Sci Gwalior 474006 MP India PDPM Indian Inst Informat Technol Design & Mfg Dumna Airport RdPO Khamaria Jabalpur MP India
DNA microarray technology has emerged as a prospective tool for diagnosis of cancer and its classification. It provides better insights of many genetic mutations occurring within a cell associated with cancer. However... 详细信息
来源: 评论
NFκB pathway analysis: An approach to analyze gene co-expression networks employing feedback cycles
收藏 引用
COMPUTATIONAL BIOLOGY AND CHEMISTRY 2018年 72卷 62-76页
作者: Dillenburg, Fabiane Cristine Zanotto-Filho, Alfeu Fonseca Moreira, Jose Claudio Ribeiro, Leila Carro, Luigi Univ Fed Rio Grande do Sul Inst Informat Porto Alegre RS Brazil Univ Fed Santa Catarina CCB Dept Farmacol Florianopolis SC Brazil Univ Fed Rio Grande do Sul ICBS Dept Bioquim Porto Alegre RS Brazil
The genes of the NF kappa B pathway are involved in the control of a plethora of biological processes ranking from inhibition of apoptosis to metastasis in cancer. It has been described that Gliobastoma multiforme (GB... 详细信息
来源: 评论
AUCTSP: an improved biomarker gene pair class predictor
收藏 引用
BMC BIOINFORMATICS 2018年 第1期19卷 1-13页
作者: Kagaris, Dimitri Khamesipour, Alireza Yiannoutsos, Constantin T. Southern Illinois Univ Dept Elect & Comp Engn 1230 Lincoln Dr Carbondale IL 62901 USA Indiana Univ Dept Biostat Sch Publ Hlth 410 West 10th StSuite 3000 Indianapolis IN 46202 USA
Background: The Top Scoring Pair (TSP) classifier, based on the concept of relative ranking reversals in the expressions of pairs of genes, has been proposed as a simple, accurate, and easily interpretable decision ru... 详细信息
来源: 评论
Gene selection for tumor classification using a novel bio-inspired multi-objective approach
收藏 引用
GENOMICS 2018年 第1期110卷 10-17页
作者: Dashtban, M. Balafar, Mohammadali Suravajhala, Prashanth Univ Tabriz Fac Elect & Comp Engn Dept Comp Engn Tabriz Iran Birla Inst Sci Res Jaipur 302001 Rajasthan India Bioclues Org Hyderabad 500072 Telangana India
Identifying the informative genes has always been a major step in microarray data analysis. The complexity of various cancer datasets makes this issue still challenging. In this paper, a novel Bio-inspired Multi-objec... 详细信息
来源: 评论
Fuzzy Clustering for microarray data analysis: A Review
收藏 引用
CURRENT BIOINFORMATICS 2011年 第4期6卷 427-443页
作者: Liu, Jin Pham, Tuan D. Univ New S Wales Sch Engn & Informat Technol Canberra ACT 2600 Australia China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangshu Peoples R China
microarray technology is capable of providing biomedical and biological researchers with a massive amount of gene expression information to enable rapid significant discoveries in life sciences. microarray data analys... 详细信息
来源: 评论
A novel hybrid feature selection method for microarray data analysis
收藏 引用
APPLIED SOFT COMPUTING 2011年 第1期11卷 208-213页
作者: Lee, Chien-Pang Leu, Yungho Natl Taiwan Univ Sci & Technol Dept Informat Management Taipei 106 Taiwan
Recently, many methods have been proposed for microarray data analysis. One of the challenges for microarray applications is to select a proper number of the most relevant genes for data analysis. In this paper, we pr... 详细信息
来源: 评论