咨询与建议

限定检索结果

文献类型

  • 146 篇 期刊文献
  • 47 篇 会议
  • 2 册 图书

馆藏范围

  • 195 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 138 篇 工学
    • 90 篇 计算机科学与技术...
    • 32 篇 生物工程
    • 28 篇 电气工程
    • 20 篇 生物医学工程(可授...
    • 6 篇 信息与通信工程
    • 6 篇 软件工程
    • 4 篇 控制科学与工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 环境科学与工程(可...
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
  • 116 篇 理学
    • 101 篇 生物学
    • 26 篇 统计学(可授理学、...
    • 22 篇 数学
    • 5 篇 化学
    • 3 篇 物理学
    • 2 篇 系统科学
  • 50 篇 医学
    • 22 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 5 篇 公共卫生与预防医...
    • 3 篇 药学(可授医学、理...
    • 2 篇 特种医学
  • 40 篇 农学
    • 8 篇 作物学
  • 7 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 2 篇 农林经济管理
    • 2 篇 公共管理
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 2 篇 法学
    • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 哲学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 195 篇 microarray data ...
  • 21 篇 feature selectio...
  • 14 篇 clustering
  • 14 篇 bioinformatics
  • 14 篇 gene expression
  • 13 篇 gene selection
  • 13 篇 cancer classific...
  • 10 篇 classification
  • 7 篇 biclustering
  • 6 篇 data mining
  • 6 篇 fuzzy clustering
  • 6 篇 false discovery ...
  • 5 篇 breast cancer
  • 4 篇 differentially e...
  • 4 篇 cancer
  • 4 篇 bidimensional cl...
  • 4 篇 microarray
  • 4 篇 bi-copam
  • 4 篇 gene expression ...
  • 3 篇 gene clustering

机构

  • 6 篇 yonsei univ dept...
  • 5 篇 city univ hong k...
  • 3 篇 univ sydney sch ...
  • 2 篇 univ tabriz fac ...
  • 2 篇 jozef stefan ins...
  • 2 篇 gachon univ med ...
  • 2 篇 jin wen inst tec...
  • 2 篇 univ minnesota d...
  • 2 篇 univ minnesota d...
  • 2 篇 univ minnesota d...
  • 2 篇 national health ...
  • 2 篇 city univ hong k...
  • 2 篇 brunel univ dept...
  • 2 篇 griffith univ sc...
  • 2 篇 indian stat inst...
  • 2 篇 florida int univ...
  • 2 篇 univ alexandria ...
  • 2 篇 nextbio cupertin...
  • 2 篇 cairo univ fac s...
  • 2 篇 indian stat inst...

作者

  • 7 篇 yan hong
  • 5 篇 park sanghyun
  • 4 篇 yoon youngmi
  • 4 篇 maji pradipta
  • 3 篇 shah ekta
  • 2 篇 nandi asoke k.
  • 2 篇 spyrou george
  • 2 篇 fa rui
  • 2 篇 lavrac nada
  • 2 篇 wang doris z.
  • 2 篇 abu-jamous basel
  • 2 篇 bien sangjay
  • 2 篇 verma yogesh kum...
  • 2 篇 trajkovski igor
  • 2 篇 simon richard
  • 2 篇 chen yi-ping pho...
  • 2 篇 jain renu
  • 2 篇 chetty madhu
  • 2 篇 mahfouz mohamed ...
  • 2 篇 li t

语言

  • 185 篇 英文
  • 8 篇 其他
  • 1 篇 法文
  • 1 篇 中文
检索条件"主题词=Microarray Data analysis"
195 条 记 录,以下是71-80 订阅
排序:
A pattern-oriented specification of gene network inference processes
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2013年 第10期43卷 1415-1427页
作者: Trepode, Nestor W. de Farias, Clever R. G. Barrera, Junior Univ Sao Paulo Dept Comp Sci & Math DCM Fac Philosophy Sci & Letters Ribeirao Preto FFCLR BR-14040901 Ribeirao Preto SP Brazil
Patterns have been widely used in Computer Science. A pattern describes a generic solution to an existing problem in a more readable and accessible form. A pattern-oriented process specification consists of a generic ... 详细信息
来源: 评论
ICP: A novel approach to predict prognosis of prostate cancer with inner-class clustering of gene expression data
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2013年 第10期43卷 1363-1373页
作者: Kim, Hyunjin Ahn, Jaegyoon Park, Chihyun Yoon, Youngmi Park, Sanghyun Yonsei Univ Dept Comp Sci Seoul 120749 South Korea Gachon Univ Dept Comp Engn Inchon South Korea
Prostate cancer has heterogeneous characteristics. For that reason, even if tumors appear histologically similar to each other, there are many cases in which they are actually different, based on their gene expression... 详细信息
来源: 评论
Statistical properties of the quantile normalization method for density curve alignment
收藏 引用
MATHEMATICAL BIOSCIENCES 2013年 第2期242卷 129-142页
作者: Gallon, Santiago Loubes, Jean-Michel Maza, Elie Univ Antioquia Dept Matemat & Estadist Fac Ciencias Econ Medellin 050010 Colombia Univ Toulouse 3 Inst Math Toulouse F-31062 Toulouse 9 France UMR 990 INRA INP ENSAT Genom & Biotechnol Fruit Lab Toulouse France
The article investigates the large sample properties of the quantile normalization method by Bolstad et al. (2003) [4] which has become one of the most popular methods to align density curves in microarray data analys... 详细信息
来源: 评论
A variational Bayesian framework for group feature selection
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2013年 第6期4卷 609-619页
作者: Subrahmanya, Niranjan Shin, Yung C. ExxonMobil Res & Engn Co Annandale NJ USA Purdue Univ W Lafayette IN 47907 USA
In many machine learning and pattern analysis applications, grouping of features during model development and the selection of a small number of relevant groups can be useful to improve the interpretability of the lea... 详细信息
来源: 评论
Sparse Manifold Clustering and Embedding to discriminate gene expression profiles of glioblastoma and meningioma tumors
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2013年 第11期43卷 1863-1869页
作者: Garcia-Gomez, Juan M. Gomez-Sanchis, Juan Escandell-Montero, Pablo Fuster-Garcia, Elies Soria-Olivas, Emilio Univ Politecn Valencia Biomed Informat Grp IBIME ITACA Valencia 46022 Spain Univ Valencia Dept Elect Engn Intelligent Data Anal Lab E-46100 Valencia Spain Hosp La Fe IIS Grp Invest Biomed Imagen GIBI230 Valencia Spain
Sparse Manifold Clustering and Embedding (SMCE) algorithm has been recently proposed for simultaneous clustering and dimensionality reduction of data on nonlinear manifolds using sparse representation techniques. In t... 详细信息
来源: 评论
Comparison of Feature Selection Methods for Cross-Laboratory microarray analysis
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013年 第3期10卷 593-604页
作者: Liu, Hsi-Che Peng, Pei-Chen Hsieh, Tzung-Chien Yeh, Ting-Chi Lin, Chih-Jen Chen, Chien-Yu Hou, Jen-Yin Shih, Lee-Yung Liang, Der-Cherng Mackay Mem Hosp Mackay Med Coll New Taipei Taiwan Mackay Mem Hosp Div Pediat Hematol Oncol New Taipei Taiwan Natl Taiwan Univ Dept Comp Sci & Informat Engn Taipei 10764 Taiwan Natl Taiwan Univ Dept Bioind Mech Engn Taipei 10764 Taiwan Chang Gung Mem Hosp Dept Internal Med Div Hematol Oncol Taipei 10591 Taiwan Chang Gung Univ Sch Med Tao Yuan Taiwan
The amount of gene expression data of microarray has grown exponentially. To apply them for extensiVe studies, integrated analysis of cross-laboratory (cross-lab) data'becomes a trend, and thus, choosing an approp... 详细信息
来源: 评论
A graph spectrum based geometric biclustering algorithm
收藏 引用
JOURNAL OF THEORETICAL BIOLOGY 2013年 317卷 200-211页
作者: Wang, Doris Z. Yan, Hong City Univ Hong Kong Dept Elect Engn Kowloon Hong Kong Peoples R China
Biclustering is capable of performing simultaneous clustering on two dimensions of a data matrix and has many applications in pattern classification. For example, in microarray experiments, a subset of genes is co-exp... 详细信息
来源: 评论
A Bayesian decision theoretic approach to directional multiple hypotheses problems
收藏 引用
JOURNAL OF MULTIVARIATE analysis 2013年 120卷 205-215页
作者: Bansal, Naveen K. Miescke, Klaus J. Marquette Univ Dept Math Stat & Comp Sci Milwaukee WI 53201 USA Univ Illinois Dept Math Stat & Comp Sci Chicago IL 60680 USA
A multiple hypothesis problem with directional alternatives is considered in a decision theoretic framework. Skewness in the alternatives is considered, and it is shown that this skewness permits the Bayes rules to po... 详细信息
来源: 评论
Identification of potential biomarkers from microarray experiments using multiple criteria optimization
收藏 引用
CANCER MEDICINE 2013年 第2期2卷 253-265页
作者: Sanchez-Pena, Matilde L. Isaza, Clara E. Perez-Morales, Jaileene Rodriguez-Padilla, Cristina Castro, Jose M. Cabrera-Rios, Mauricio Univ Puerto Rico Mayaguez Dept Ind Engn Bio IE Lab Mayaguez PR 00680 USA Univ Autonoma Nuevo Leon Immunol & Virol Lab Monterrey Mexico Ohio State Univ Columbus OH 43210 USA
microarray experiments are capable of determining the relative expression of tens of thousands of genes simultaneously, thus resulting in very large databases. The analysis of these databases and the extraction of bio... 详细信息
来源: 评论
Mining Breast Cancer Genetic data
Mining Breast Cancer Genetic Data
收藏 引用
9th International Conference on Natural Computation (ICNC)
作者: Mansour, Nashat Zardout, Rouba El-Sibai, Mirvat Lebanese Amer Univ Dept Comp Sci & Math Beirut Lebanon Lebanese Amer Univ Dept Nat Sci Beirut Lebanon
Analyzing breast cancer gene expression data is a very challenging problem due to the large amount of genes examined. Computational techniques have proved reliable to make sense of large amounts of data like the data ... 详细信息
来源: 评论