咨询与建议

限定检索结果

文献类型

  • 75 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 81 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 68 篇 工学
    • 47 篇 生物工程
    • 18 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 5 篇 控制科学与工程
    • 4 篇 信息与通信工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 软件工程
    • 2 篇 仪器科学与技术
    • 1 篇 化学工程与技术
    • 1 篇 网络空间安全
  • 62 篇 理学
    • 57 篇 生物学
    • 5 篇 数学
    • 3 篇 化学
    • 2 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 44 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 3 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...
  • 17 篇 农学
    • 2 篇 作物学
  • 4 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 公共管理

主题

  • 81 篇 microarray datas...
  • 10 篇 feature selectio...
  • 7 篇 support vector m...
  • 5 篇 gene selection
  • 5 篇 genetic algorith...
  • 4 篇 microarray data
  • 3 篇 lung adenocarcin...
  • 3 篇 gene subset
  • 3 篇 pareto front
  • 3 篇 microarray exper...
  • 3 篇 acute lymphoblas...
  • 3 篇 classification p...
  • 3 篇 particle swarm o...
  • 3 篇 cluster algorith...
  • 2 篇 gene expression ...
  • 2 篇 random forest
  • 2 篇 malignant pleura...
  • 2 篇 missing values
  • 2 篇 hierarchical clu...
  • 2 篇 gene list

机构

  • 3 篇 hunan agr univ s...
  • 2 篇 univ sydney ctr ...
  • 2 篇 cent s univ fore...
  • 2 篇 univ sydney sydn...
  • 2 篇 so illinois univ...
  • 2 篇 natl cheng kung ...
  • 2 篇 beihang univ sta...
  • 2 篇 natl cheng kung ...
  • 2 篇 drexel univ coll...
  • 2 篇 beihang univ bei...
  • 2 篇 nicta eveleigh n...
  • 1 篇 inst pasteur lab...
  • 1 篇 univ adelaide au...
  • 1 篇 vanderbilt univ ...
  • 1 篇 state univ ghent...
  • 1 篇 univ s carolina ...
  • 1 篇 korea univ dept ...
  • 1 篇 stanford univ sc...
  • 1 篇 erasmus mc josep...
  • 1 篇 univ memphis dep...

作者

  • 3 篇 li zhoujun
  • 3 篇 chen yiming
  • 3 篇 zhou xianghong j...
  • 3 篇 hu xiaohua
  • 3 篇 liu junwan
  • 3 篇 hu jianjun
  • 2 篇 tseng vincent s.
  • 2 篇 tozeren aydin
  • 2 篇 waterman michael...
  • 2 篇 zare masoumeh
  • 2 篇 liu yu-cheng
  • 2 篇 dhanalakshmi r.
  • 2 篇 balakrishnan k.
  • 2 篇 sarkar ram
  • 2 篇 cheng chun-pei
  • 2 篇 khaire utkarsh m...
  • 1 篇 homayouni ramin
  • 1 篇 aher chetan nimb...
  • 1 篇 jiang xiaoyi
  • 1 篇 elhoseny mohamed

语言

  • 78 篇 英文
  • 2 篇 中文
  • 1 篇 土耳其文
检索条件"主题词=Microarray Dataset"
81 条 记 录,以下是11-20 订阅
排序:
Transcription network construction for large-scale microarray datasets using a high-performance computing approach
收藏 引用
BMC GENOMICS 2008年 第Sup1期9卷 S5-S5页
作者: Zhu, Mengxia (Michelle) Wu, Qishi So Illinois Univ Dept Comp Sci Carbondale IL 62901 USA Univ Memphis Dept Comp Sci Memphis TN 38152 USA
Background: The advance in high-throughput genomic technologies including microarrays has demonstrated the potential of generating a tremendous amount of gene expression data for the entire genome. Deciphering transcr... 详细信息
来源: 评论
Global rank-invariant set normalization (GRSN) to reduce systematic distortions in microarray data
收藏 引用
BMC BIOINFORMATICS 2008年 第1期9卷 1-18页
作者: Pelz, Carl R. Kulesz-Martin, Molly Bagby, Grover Sears, Rosalie C. Oregon Hlth & Sci Univ Dept Mol & Med Genet Portland OR 97239 USA Oregon Hlth & Sci Univ Dept Dermatol Portland OR 97239 USA Oregon Hlth & Sci Univ Dept Cell & Dev Biol Portland OR 97239 USA Oregon Hlth & Sci Univ Dept Med Portland OR 97239 USA Oregon Hlth & Sci Univ OHSU Knight Canc Inst Portland OR 97239 USA
Background: microarray technology has become very popular for globally evaluating gene expression in biological samples. However, non-linear variation associated with the technology can make data interpretation unreli... 详细信息
来源: 评论
Dynamic genetic algorithm-based feature selection and incomplete value imputation for microarray classification
收藏 引用
CURRENT SCIENCE 2017年 第1期112卷 126-131页
作者: Priya, R. Devi Sivaraj, R. Kongu Engn Coll Dept Informat Technol Erode 638052 India Velalar Coll Engn & Technol Dept Comp Sci & Engn Erode 638002 India
Large microarray datasets usually contain many features with missing values. Inferences made from such incomplete datasets may be biased. To address this issue, we propose a novel preprocessing method called dynamic g... 详细信息
来源: 评论
Integrative disease classification based on cross-platform microarray data
收藏 引用
BMC BIOINFORMATICS 2009年 第Sup1期10卷 S25-S25页
作者: Liu, Chun-Chi Hu, Jianjun Kalakrishnan, Mrinal Huang, Haiyan Zhou, Xianghong Jasmine Univ Calif Berkeley Dept Stat Berkeley CA 94720 USA Univ So Calif Los Angeles CA 90089 USA
Background: Disease classification has been an important application of microarray technology. However, most microarray-based classifiers can only handle data generated within the same study, since microarray data gen... 详细信息
来源: 评论
Multiobjective feature selection for microarray data via distributed parallel algorithms
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2019年 100卷 952-981页
作者: Cao, Bin Zhao, Jianwei Yang, Po Yang, Peng Liu, Xin Qi, Jun Simpson, Andrew Elhoseny, Mohamed Mehmoode, Irfan Muhammad, Khan Hebei Univ Technol State Key Lab Reliabil & Intelligence Elect Equip Tianjin Peoples R China Hebei Univ Technol Sch Artificial Intelligence Tianjin Peoples R China Liverpool John Moores Univ Dept Comp Sci Liverpool Merseyside England Mansoura Univ Fac Computers & Informat Mansoura Egypt Univ Bradford Dept Media Design & Technol Fac Engn & Informat Bradford BD7 1DP W Yorkshire England Sejong Univ Dept Software Seoul 143747 South Korea
Many real-world problems are large in scale and hence difficult to address. Due to the large number of features in microarray datasets, feature selection and classification are even more challenging for such datasets.... 详细信息
来源: 评论
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
收藏 引用
BMC BIOINFORMATICS 2008年 第1期9卷 1-10页
作者: Statnikov, Alexander Wang, Lily Aliferis, Constantin F. Vanderbilt Univ Dept Biomed Informat Nashville TN 37203 USA Vanderbilt Univ Dept Biostat Nashville TN USA Vanderbilt Univ Dept Canc Biol Nashville TN USA Vanderbilt Univ Dept Comp Sci Nashville TN 37235 USA
Background: Cancer diagnosis and clinical outcome prediction are among the most important emerging applications of gene expression microarray technology with several molecular signatures on their way toward clinical d... 详细信息
来源: 评论
Reproducible clusters from microarray research: Whither?
收藏 引用
BMC BIOINFORMATICS 2005年 第s2期6卷 S10-S10页
作者: Garge, NR Page, GP Sprague, AP Gorman, BS Allison, DB Univ Alabama Birmingham Dept Biostat Sect Stat Genet Birmingham AL 35294 USA Univ Alabama Birmingham Dept Comp & Informat Sci Birmingham AL 35294 USA Hofstra Univ Dept Psychol Hempstead NY 11550 USA Med Coll Georgia Augusta GA 30912 USA
Motivation: In cluster analysis, the validity of specific solutions, algorithms, and procedures present significant challenges because there is no null hypothesis to test and no 'right answer'. It has been not... 详细信息
来源: 评论
From co-expression to co-regulation: how many microarray experiments do we need?
收藏 引用
GENOME BIOLOGY 2004年 第7期5卷 1-11页
作者: Yeung, KY Medvedovic, M Bumgarner, RE Univ Washington Dept Microbiol Seattle WA 98195 USA Univ Cincinnati Med Ctr Dept Environm Hlth Ctr Genome Informat Cincinnati OH 45267 USA
Background: Cluster analysis is often used to infer regulatory modules or biological function by associating unknown genes with other genes that have similar expression patterns and known regulatory elements or functi... 详细信息
来源: 评论
In Silico Evaluation of Predicted Regulatory Interactions in Arabidopsis thaliana
收藏 引用
BMC BIOINFORMATICS 2009年 第1期10卷 1-15页
作者: Nero, Damion Katari, Manpreet S. Kelfer, Jonathan Tranchina, Daniel Coruzzi, Gloria M. NYU Dept Biol Ctr Genom & Syst Biol New York NY 10003 USA NYU Courant Inst Math Sci New York NY 10003 USA
Background: Prediction of transcriptional regulatory mechanisms in Arabidopsis has become increasingly critical with the explosion of genomic data now available for both gene expression and gene sequence composition. ... 详细信息
来源: 评论
Inference of radio-responsive gene regulatory networks using the graphical lasso algorithm
收藏 引用
BMC BIOINFORMATICS 2014年 第Sup7期15卷 S5-S5页
作者: Oh, Jung Hun Deasy, Joseph O. Mem Sloan Kettering Canc Ctr Dept Med Phys New York NY 10021 USA
Background: Inference of gene regulatory networks (GRNs) from gene microarray expression data is of great interest and remains a challenging task in systems biology. Despite many efforts to develop efficient computati... 详细信息
来源: 评论