咨询与建议

限定检索结果

文献类型

  • 75 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 81 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 68 篇 工学
    • 47 篇 生物工程
    • 18 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 5 篇 控制科学与工程
    • 4 篇 信息与通信工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 软件工程
    • 2 篇 仪器科学与技术
    • 1 篇 化学工程与技术
    • 1 篇 网络空间安全
  • 62 篇 理学
    • 57 篇 生物学
    • 5 篇 数学
    • 3 篇 化学
    • 2 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 38 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...
  • 17 篇 农学
    • 2 篇 作物学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 81 篇 microarray datas...
  • 10 篇 feature selectio...
  • 7 篇 support vector m...
  • 5 篇 gene selection
  • 5 篇 genetic algorith...
  • 4 篇 microarray data
  • 3 篇 lung adenocarcin...
  • 3 篇 gene subset
  • 3 篇 pareto front
  • 3 篇 microarray exper...
  • 3 篇 acute lymphoblas...
  • 3 篇 classification p...
  • 3 篇 particle swarm o...
  • 3 篇 cluster algorith...
  • 2 篇 gene expression ...
  • 2 篇 random forest
  • 2 篇 malignant pleura...
  • 2 篇 missing values
  • 2 篇 hierarchical clu...
  • 2 篇 gene list

机构

  • 3 篇 hunan agr univ s...
  • 2 篇 univ sydney ctr ...
  • 2 篇 cent s univ fore...
  • 2 篇 univ sydney sydn...
  • 2 篇 so illinois univ...
  • 2 篇 natl cheng kung ...
  • 2 篇 beihang univ sta...
  • 2 篇 natl cheng kung ...
  • 2 篇 drexel univ coll...
  • 2 篇 beihang univ bei...
  • 2 篇 nicta eveleigh n...
  • 1 篇 inst pasteur lab...
  • 1 篇 univ adelaide au...
  • 1 篇 vanderbilt univ ...
  • 1 篇 state univ ghent...
  • 1 篇 univ s carolina ...
  • 1 篇 korea univ dept ...
  • 1 篇 stanford univ sc...
  • 1 篇 erasmus mc josep...
  • 1 篇 univ memphis dep...

作者

  • 3 篇 li zhoujun
  • 3 篇 chen yiming
  • 3 篇 zhou xianghong j...
  • 3 篇 hu xiaohua
  • 3 篇 liu junwan
  • 3 篇 hu jianjun
  • 2 篇 tseng vincent s.
  • 2 篇 tozeren aydin
  • 2 篇 waterman michael...
  • 2 篇 zare masoumeh
  • 2 篇 liu yu-cheng
  • 2 篇 dhanalakshmi r.
  • 2 篇 balakrishnan k.
  • 2 篇 sarkar ram
  • 2 篇 cheng chun-pei
  • 2 篇 khaire utkarsh m...
  • 1 篇 homayouni ramin
  • 1 篇 aher chetan nimb...
  • 1 篇 jiang xiaoyi
  • 1 篇 elhoseny mohamed

语言

  • 78 篇 英文
  • 2 篇 中文
  • 1 篇 土耳其文
检索条件"主题词=Microarray Dataset"
81 条 记 录,以下是41-50 订阅
排序:
Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB
收藏 引用
BMC BIOINFORMATICS 2009年 第1期10卷 354-354页
作者: Chatziioannou, Aristotelis Moulos, Panagiotis Kolisis, Fragiskos N. Natl Hellen Res Fdn Inst Biol Res & Biotechnol Metab Engn & Bioinformat Grp Athens 11635 Greece
Background: The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or ba... 详细信息
来源: 评论
A unified framework for finding differentially expressed genes from microarray experiments
收藏 引用
BMC BIOINFORMATICS 2007年 第1期8卷 1-21页
作者: Shaik, Jahangheer S. Yeasin, Mohammed Univ Memphis Dept Elect & Comp Engn CVPIA Lab Memphis TN 38152 USA Univ Memphis Bioinformat Program CVPIA Lab Memphis TN 38152 USA Univ Memphis CVPIA Lab Memphis TN 38152 USA Univ Memphis Ctr Adv Robot CVPIA Lab Memphis TN 38152 USA Univ Memphis Software Testing & Excellence Program Memphis TN 38152 USA
Background: This paper presents a unified framework for finding differentially expressed genes (DEGs) from the microarray data. The proposed framework has three interrelated modules: (i) gene ranking, ii) significance... 详细信息
来源: 评论
Spotting effect in microarray experiments
收藏 引用
BMC BIOINFORMATICS 2004年 第1期5卷 63-63页
作者: Mary-Huard, T Daudin, JJ Robin, S Bitton, F Cabannes, E Hilson, P Inst Natl Agron Paris Grignon F-75231 Paris France Univ Evry CNRS INRA UMR Gen Vegetale F-91057 Evry France Inst Pasteur Lab Immunol Virale F-75724 Paris France State Univ Ghent VIB Dept Plant Syst Biol B-9052 Ghent Belgium
Background: microarray data must be normalized because they suffer from multiple biases. We have identified a source of spatial experimental variability that significantly affects data obtained with Cy3/Cy5 spotted gl... 详细信息
来源: 评论
Discovering time-lagged rules from microarray data using gene profile classifiers
收藏 引用
BMC BIOINFORMATICS 2011年 第1期12卷 1-21页
作者: Gallo, Cristian A. Carballido, Jessica A. Ponzoni, Ignacio Univ Nacl Sur Dept Ciencias & Ingn Computac Lab Invest & Desarrollo Computac Cient LIDeCC RA-8000 Bahia Blanca Buenos Aires Argentina UNS CONICET Planta Piloto Ingn Quim PLAPIQUI Bahia Blanca Buenos Aires Argentina
Background: Gene regulatory networks have an essential role in every process of life. In this regard, the amount of genome-wide time series data is becoming increasingly available, providing the opportunity to discove... 详细信息
来源: 评论
Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data
收藏 引用
BMC BIOINFORMATICS 2010年 第1期11卷 567-567页
作者: Bartenhagen, Christoph Klein, Hans-Ulrich Ruckert, Christian Jiang, Xiaoyi Dugas, Martin Univ Munster Dept Med Informat & Biomath D-48149 Munster Germany Univ Munster Dept Comp Sci D-48149 Munster Germany
Background: Visualization of DNA microarray data in two or three dimensional spaces is an important exploratory analysis step in order to detect quality issues or to generate new hypotheses. Principal Component Analys... 详细信息
来源: 评论
A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data
收藏 引用
BMC BIOINFORMATICS 2010年 第Sup1期11卷 S5-S5页
作者: Yang, Pengyi Zhou, Bing B. Zhang, Zili Zomaya, Albert Y. Univ Sydney Sch Informat Technol J12 Sydney NSW 2006 Australia NICTA Eveleigh NSW 2015 Australia Southwest Univ Fac Comp & Informat Sci Cq 400715 Peoples R China Deakin Univ Sch Informat Technol Geelong Vic 3217 Australia Univ Sydney Sydney Bioinformat Sydney NSW 2006 Australia Univ Sydney Ctr Math Biol Sydney NSW 2006 Australia Univ Sydney Ctr Distributed & High Performance Comp Sydney NSW 2006 Australia
Background: Feature selection techniques are critical to the analysis of high dimensional datasets. This is especially true in gene selection from microarray data which are commonly with extremely high feature-to-samp... 详细信息
来源: 评论
A balanced iterative random forest for gene selection from microarray data
收藏 引用
BMC BIOINFORMATICS 2013年 第1期14卷 1-10页
作者: Anaissi, Ali Kennedy, Paul J. Goyal, Madhu Catchpoole, Daniel R. Univ Technol Sydney Fac Engn & Informat Technol Ctr Quantum Computat & Intelligent Syst QCIS Broadway NSW 2007 Australia Childrens Hosp Westmead Childrens Canc Res Unit Tumour Bank Westmead NSW 2145 Australia
Background: The wealth of gene expression values being generated by high throughput microarray technologies leads to complex high dimensional datasets. Moreover, many cohorts have the problem of imbalanced classes whe... 详细信息
来源: 评论
AMDA: an R package for the automated microarray data analysis
收藏 引用
BMC BIOINFORMATICS 2006年 第1期7卷 335-335页
作者: Pelizzola, Mattia Pavelka, Norman Foti, Maria Ricciardi-Castagnoli, Paola Department of Biotechnology and Biosciences University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
\Background: microarrays are routinely used to assess mRNA transcript levels on a genome-wide scale. Large amount of microarray datasets are now available in several databases, and new experiments are constantly being... 详细信息
来源: 评论
GeneXplorer: an interactive web application for microarray data visualization and analysis
收藏 引用
BMC BIOINFORMATICS 2004年 第1期5卷 141-141页
作者: Rees, CA Demeter, J Matese, JC Botstein, D Sherlock, G Stanford Univ Sch Med Dept Genet Stanford CA 94305 USA Stanford Univ Sch Med Dept Biochem Stanford CA 94305 USA Princeton Univ Lewis Sigler Inst Integrat Genom Carl Icahn Lab Princeton NJ 08544 USA
Background: When publishing large-scale microarray datasets, it is of great value to create supplemental websites where either the full data, or selected subsets corresponding to figures within the paper, can be brows... 详细信息
来源: 评论
Hybrid Filter and Genetic Algorithm-Based Feature Selection for Improving Cancer Classification in High-Dimensional microarray Data
收藏 引用
PROCESSES 2023年 第2期11卷 562页
作者: Ali, Waleed Saeed, Faisal King Abdulaziz Univ Fac Comp & Informat Technol Rabigh Informat Technol Dept Jeddah 25729 Saudi Arabia Birmingham City Univ Sch Comp & Digital Technol Dept Comp & Data Sci DAAI Res Grp Birmingham B4 7XG England
The advancements in intelligent systems have contributed tremendously to the fields of bioinformatics, health, and medicine. Intelligent classification and prediction techniques have been used in studying microarray d... 详细信息
来源: 评论