Background: Cross-platform analysis of gene express data requires multiple, intricate processes at different layers with various platforms. However, existing tools handle only a single platform and are not flexible en...
详细信息
Background: Cross-platform analysis of gene express data requires multiple, intricate processes at different layers with various platforms. However, existing tools handle only a single platform and are not flexible enough to support custom changes, which arise from the new statistical methods, updated versions of reference data, and better platforms released every month or year. Current tools are so tightly coupled with reference information, such as reference genome, transcriptome database, and SNP, which are often erroneous or outdated, that the output results are incorrect and misleading. Results: We developed AnyExpress, a software package that combines cross-platform gene expression data using a fast interval-matching algorithm. Supported platforms include next-generation-sequencing technology, microarray, SAGE, MPSS, and more. Users can define custom target transcriptome database references for probe/read mapping in any species, as well as criteria to remove undesirable probes/reads. AnyExpress offers scalable processing features such as binding, normalization, and summarization that are not present in existing software tools. As a case study, we applied AnyExpress to published Affymetrix microarray and Illumina NGS RNA-Seq data from human kidney and liver. The mean of within-platform correlation coefficient was 0.98 for within-platform samples in kidney and liver, respectively. The mean of cross-platform correlation coefficients was 0.73. These results confirmed those of the original and secondary studies. Applying filtering produced higher agreement between microarray and NGS, according to an agreement index calculated from differentially expressed genes. Conclusion: AnyExpress can combine cross-platform gene expression data, process data from both open-and closed-platforms, select a custom target reference, filter out undesirable probes or reads based on custom-defined biological features, and perform quantile-normalization with a large number of microarray
Background: Much of the public access cancer microarray data is asymmetric, belonging to datasets containing no samples from normal tissue. Asymmetric data cannot be used in standard meta-analysis approaches (such as ...
详细信息
Background: Much of the public access cancer microarray data is asymmetric, belonging to datasets containing no samples from normal tissue. Asymmetric data cannot be used in standard meta-analysis approaches (such as the inverse variance method) to obtain large sample sizes for statistical power enrichment. Noting that plenty of normal tissue microarray samples exist in studies not involving cancer, we investigated the viability and accuracy of an integrated microarray analysis approach based on significance analysis of microarrays (merged SAM) using a collection of data from separate diseased and normal samples. Results: We focused on five solid cancer types (colon, kidney, liver, lung, and pancreas), where available microarray data allowed us to compare meta-analysis and integrated approaches. Our results from the merged SAM significantly overlapped gene lists from the validated inverse-variance method. Both meta-analysis and merged SAM approaches successfully captured the aberrances in the cell cycle that commonly occur in the different cancer types. However, the integrated SAM analysis replicated the known cancer literature (excluding microarray studies) with much more accuracy than the meta-analysis. Conclusion: The merged SAM test is a powerful, robust approach for combining data from similar platforms and for analyzing asymmetric datasets, including those with only normal or only cancer samples that cannot be utilized by meta-analysis methods. The integrated SAM approach can also be used in comparing global gene expression between various subtypes of cancer arising from the same tissue.
Background: Modern approaches to treating genetic disorders, cancers and even epidemics rely on a detailed understanding of the underlying gene signaling network. Previous work has used time series microarray data to ...
详细信息
Background: Modern approaches to treating genetic disorders, cancers and even epidemics rely on a detailed understanding of the underlying gene signaling network. Previous work has used time series microarray data to infer gene signaling networks given a large number of accurate time series samples. microarray data available for many biological experiments is limited to a small number of arrays with little or no time series guarantees. When several samples are averaged to examine differences in mean value between a diseased and normal state, information from individual samples that could indicate a gene relationship can be lost. Results: Asynchronous Inference of Regulatory Networks (AIRnet) provides gene signaling network inference using more practical assumptions about the microarray data. By learning correlation patterns for the changes in microarray values from all pairs of samples, accurate network reconstructions can be performed with data that is normally available in microarray experiments. Conclusions: By focussing on the changes between microarray samples, instead of absolute values, increased information can be gleaned from expression data.
Background: Large-scale compilation of gene expression microarray datasets across diverse biological phenotypes provided a means of gathering a priori knowledge in the form of identification and annotation of bimodal ...
详细信息
Background: Large-scale compilation of gene expression microarray datasets across diverse biological phenotypes provided a means of gathering a priori knowledge in the form of identification and annotation of bimodal genes in the human and mouse genomes. These switch-like genes consist of 15% of known human genes, and are enriched with genes coding for extracellular and membrane proteins. It is of interest to determine the prediction potential of bimodal genes for class discovery in large-scale datasets. Results: Use of a model-based clustering algorithm accurately classified more than 400 microarray samples into 19 different tissue types on the basis of bimodal gene expression. Bimodal expression patterns were also highly effective in differentiating between infectious diseases in model-based clustering of microarray data. Supervised classification with feature selection restricted to switch-like genes also recognized tissue specific and infectious disease specific signatures in independent test datasets reserved for validation. Determination of "on" and "off" states of switch-like genes in various tissues and diseases allowed for the identification of activated/deactivated pathways. Activated switch-like genes in neural, skeletal muscle and cardiac muscle tissue tend to have tissue-specific roles. A majority of activated genes in infectious disease are involved in processes related to the immune response. Conclusion: Switch-like bimodal gene sets capture genome-wide signatures from microarray data in health and infectious disease. A subset of bimodal genes coding for extracellular and membrane proteins are associated with tissue specificity, indicating a potential role for them as biomarkers provided that expression is altered in the onset of disease. Furthermore, we provide evidence that bimodal genes are involved in temporally and spatially active mechanisms including tissue-specific functions and response of the immune system to invading pathogens.
暂无评论