咨询与建议

限定检索结果

文献类型

  • 598 篇 期刊文献
  • 170 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 774 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 549 篇 工学
    • 386 篇 计算机科学与技术...
    • 136 篇 生物工程
    • 111 篇 电气工程
    • 59 篇 生物医学工程(可授...
    • 39 篇 控制科学与工程
    • 23 篇 软件工程
    • 21 篇 信息与通信工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 化学工程与技术
    • 9 篇 仪器科学与技术
    • 5 篇 环境科学与工程(可...
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 冶金工程
  • 436 篇 理学
    • 336 篇 生物学
    • 133 篇 统计学(可授理学、...
    • 60 篇 数学
    • 25 篇 化学
    • 19 篇 系统科学
    • 8 篇 物理学
    • 5 篇 生态学
  • 158 篇 医学
    • 75 篇 基础医学(可授医学...
    • 41 篇 临床医学
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 122 篇 农学
    • 32 篇 作物学
  • 55 篇 管理学
    • 42 篇 管理科学与工程(可...
    • 11 篇 公共管理
  • 30 篇 经济学
    • 30 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 774 篇 microarray data
  • 103 篇 feature selectio...
  • 61 篇 classification
  • 58 篇 gene selection
  • 48 篇 gene expression
  • 34 篇 bioinformatics
  • 31 篇 clustering
  • 30 篇 cancer classific...
  • 23 篇 machine learning
  • 20 篇 genetic algorith...
  • 17 篇 support vector m...
  • 17 篇 data mining
  • 17 篇 biclustering
  • 16 篇 feature extracti...
  • 16 篇 false discovery ...
  • 15 篇 cancer
  • 15 篇 gene ontology
  • 13 篇 differentially e...
  • 13 篇 breast cancer
  • 13 篇 genetic algorith...

机构

  • 7 篇 jadavpur univ de...
  • 6 篇 univ rochester d...
  • 5 篇 indian stat inst...
  • 5 篇 hefei univ techn...
  • 4 篇 nehu it dept shi...
  • 4 篇 gimt ece dept kr...
  • 4 篇 chuzhou univ sch...
  • 4 篇 univ calcutta cs...
  • 3 篇 royal thai air f...
  • 3 篇 osaka prefecture...
  • 3 篇 res ctr comp sci...
  • 3 篇 osaka prefecture...
  • 3 篇 georgia inst tec...
  • 3 篇 mohamed boudiaf ...
  • 3 篇 mit dept elect e...
  • 3 篇 xiamen univ dept...
  • 3 篇 univ calcutta de...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 univ teknol mala...

作者

  • 11 篇 deris safaai
  • 9 篇 yoshioka michifu...
  • 9 篇 omatu sigeru
  • 9 篇 mohamad mohd sab...
  • 8 篇 saha goutam
  • 7 篇 wang aiguo
  • 7 篇 sarkar ram
  • 6 篇 an ning
  • 6 篇 yakovlev andrei
  • 6 篇 li wei
  • 6 篇 mandal sudip
  • 5 篇 xie weidong
  • 5 篇 dash rasmita
  • 5 篇 klebanov lev
  • 5 篇 pal rajat kumar
  • 5 篇 boongoen tossapo...
  • 4 篇 moorthy kohbalan
  • 4 篇 liu kun-hong
  • 4 篇 hong qingqi
  • 4 篇 chen guilin

语言

  • 741 篇 英文
  • 32 篇 其他
  • 1 篇 中文
检索条件"主题词=Microarray data"
774 条 记 录,以下是31-40 订阅
排序:
Partial maximum correlation information: A new feature selection method for microarray data classification
收藏 引用
NEUROCOMPUTING 2019年 323卷 231-243页
作者: Yuan, Mingshun Yang, Zijiang Ji, Guoli Xiamen Univ Dept Automat Xiamen 361005 Fujian Peoples R China York Univ Sch Informat Technol Toronto ON M3J 1P3 Canada Xiamen Univ Innovat Ctr Cell Signaling Network Xiamen 361102 Fujian Peoples R China
Feature (gene) selection of microarray data is a very important and challenging task. This paper proposes a new feature selection method, partial maximum correlation information (PMCI), for microarray data classificat... 详细信息
来源: 评论
A novel ECOC algorithm for multiclass microarray data classification based on data complexity analysis
收藏 引用
PATTERN RECOGNITION 2019年 90卷 346-362页
作者: Sun, Mengxin Liu, Kunhong Wu, Qingqiang Hong, Qingqi Wang, Beizhan Zhang, Haiying Xiamen Univ Software Sch Xiamen 361005 Fujian Peoples R China
Nowadays, a lot of new classification and clustering techniques have been proposed for microarray data analysis. However, the multiclass microarray data classification is still regarded as a tough task because of the ... 详细信息
来源: 评论
Design Exploration of Geometric Biclustering for microarray data Analysis in data Mining
收藏 引用
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2014年 第10期25卷 2540-2550页
作者: Wang, Doris Z. Cheung, Ray C. C. Yan, Hong City Univ Hong Kong Dept Elect Engn Hong Kong Hong Kong Peoples R China
Biclustering is an important technique in data mining for searching similar patterns. Geometric biclustering (GBC) method is used to reduce the complexity of the NP-complete biclustering algorithm. This paper studies ... 详细信息
来源: 评论
Constructing the gene regulation-level representation of microarray data for cancer classification
收藏 引用
JOURNAL OF BIOMEDICAL INFORMATICS 2008年 第1期41卷 95-105页
作者: Wong, Hau-San Wang, Hong-Qiang City Univ Hong Kong Dept Comp Sci Kowloon Hong Kong Peoples R China
In this paper, we propose a regulation-level representation for microarray data and optimize it using genetic algorithms (GAs) for cancer classification. Compared with the traditional expression-level features, this r... 详细信息
来源: 评论
A new multi-objective binary Harris Hawks optimization for gene selection in microarray data
收藏 引用
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2021年 第4期14卷 3157-3176页
作者: Dabba, Ali Tari, Abdelkamel Meftali, Samy Mohamed Boudiaf Univ Fac Math & Comp Sci Comp Sci Dept Msila Algeria Abderrahmane Mira Univ Fac Sci Comp Sci Dept Bejaia Algeria Med Comp Lab LIMED Bejaia Algeria Univ Lille Lille France Res Ctr Comp Sci Signal & Automat Control Lille C Lille France Lab Informat & Its Applicat Msila LIAM Msila Algeria
Cancer classification is one of the main applications of gene expression data (microarray data) and is essential for a comprehensive diagnosis of cancer treatment. Therefore, bio-inspired algorithms have developed sev... 详细信息
来源: 评论
Cancer classification from time series microarray data through regulatory Dynamic Bayesian Networks
收藏 引用
COMPUTERS IN BIOLOGY AND MEDICINE 2020年 116卷 103577-103577页
作者: Kourou, Konstantina Rigas, George Papaloukas, Costas Mitsis, Michalis Fotiadis, Dimitrios I. Univ Ioannina Dept Mat Sci & Engn Unit Med Technol & Intelligent Informat Syst GR-45110 Ioannina Greece Univ Ioannina Dept Biol Applicat & Technol GR-45110 Ioannina Greece Univ Ioannina Fac Med Sch Hlth Sci Dept Surg GR-45110 Ioannina Greece Univ Ioannina Fac Med Sch Hlth Sci Canc Biobank Ctr GR-45110 Ioannina Greece Fdn Res & Technol Hellas Dept Biomed Res Inst Mol Biol & Biotechnol GR-45110 Ioannina Greece
Genomic profiling of cancer studies has generated comprehensive gene expression patterns for diverse phenotypes. Computational methods which employ transcriptomics datasets have been proposed to model gene expression ... 详细信息
来源: 评论
A New Evolutionary Ensemble Learning of Multimodal Feature Selection from microarray data
收藏 引用
NEURAL PROCESSING LETTERS 2023年 第5期55卷 6753-6780页
作者: Nekouie, Nadia Romoozi, Morteza Esmaeili, Mahdi Islamic Azad Univ Dept Comp Engn Kashan Branch Kashan Iran
In the last decades, data has grown exponentially with respect to the number of samples and features. This makes the feature selection (FS) more challenging. In this paper, an optimization method called the multimodal... 详细信息
来源: 评论
Can classification performance be predicted by complexity measures? A study using microarray data
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2017年 第3期51卷 1067-1090页
作者: Moran-Fernandez, L. Bolon-Canedo, V. Alonso-Betanzos, A. Univ A Coruna Dept Comp Sci Lab Res & Dev Artificial Intelligence LIDIA La Coruna 15071 Spain
data complexity analysis enables an understanding of whether classification performance could be affected, not by algorithm limitations, but by intrinsic data characteristics. microarray datasets based on high numbers... 详细信息
来源: 评论
A reductionist approach to extract robust molecular markers from microarray data series - Isolating markers to track osseointegration
收藏 引用
JOURNAL OF BIOMEDICAL INFORMATICS 2017年 68卷 104-111页
作者: Barik, Anwesha Banerjee, Satarupa Dhara, Santanu Chakravorty, Nishant Indian Inst Technol Sch Med Sci & Technol Kharagpur 721302 W Bengal India
Complexities in the full genome expression studies hinder the extraction of tracker genes to analyze the course of biological events. In this study, we demonstrate the applications of supervised machine learning metho... 详细信息
来源: 评论
Computational intelligence for microarray data and biomedical image analysis for the early diagnosis of breast cancer
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2012年 第16期39卷 12371-12377页
作者: Nahar, Jesmin Imam, Tasadduq Tickle, Kevin S. Ali, A. B. M. Shawkat Chen, Yi-Ping Phoebe Cent Queensland Univ Fac Arts Business Informat & Educ Rockhampton Qld 4702 Australia La Trobe Univ Dept Comp Sci & Comp Engn Melbourne Vic 3086 Australia
The objective of this paper was to perform a comparative analysis of the computational intelligence algorithms to identify breast cancer in its early stages. Two types of data representations were considered: microarr... 详细信息
来源: 评论