咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 17 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 理学
    • 10 篇 数学
    • 1 篇 物理学
    • 1 篇 系统科学
  • 11 篇 工学
    • 7 篇 控制科学与工程
    • 4 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 软件工程
    • 1 篇 仪器科学与技术
    • 1 篇 信息与通信工程
    • 1 篇 生物医学工程(可授...
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...

主题

  • 17 篇 mirror descent a...
  • 3 篇 distributed opti...
  • 3 篇 stochastic appro...
  • 3 篇 two-armed bandit...
  • 2 篇 minimax approach
  • 2 篇 constrained opti...
  • 2 篇 batch processing
  • 2 篇 stochastic progr...
  • 2 篇 almost sure conv...
  • 2 篇 exp3
  • 2 篇 multi-agent syst...
  • 2 篇 monte carlo samp...
  • 2 篇 uniform quantize...
  • 2 篇 sample average a...
  • 1 篇 large deviations...
  • 1 篇 parallel process...
  • 1 篇 two-stage robust...
  • 1 篇 reinforcement le...
  • 1 篇 distributed onli...
  • 1 篇 concentration in...

机构

  • 2 篇 georgia inst tec...
  • 2 篇 nanjing univ sci...
  • 2 篇 indian inst tech...
  • 1 篇 city univ hong k...
  • 1 篇 univ toronto dep...
  • 1 篇 yaroslav the wis...
  • 1 篇 royal inst techn...
  • 1 篇 vector inst on
  • 1 篇 yaroslav the wis...
  • 1 篇 microsoft res ny...
  • 1 篇 tokyo univ agr &...
  • 1 篇 russian acad sci...
  • 1 篇 tokyo univ agr &...
  • 1 篇 tokyo univ agr &...
  • 1 篇 univ grenoble 1 ...
  • 1 篇 school of automa...
  • 1 篇 univ calif davis...
  • 1 篇 univ florida gai...
  • 1 篇 yaroslav the wis...
  • 1 篇 anhui normal uni...

作者

  • 2 篇 xiong menghui
  • 2 篇 yano shiro
  • 2 篇 mahindrakar arun...
  • 2 篇 kondo toshiyuki
  • 2 篇 zhang baoyong
  • 2 篇 paul anik kumar
  • 2 篇 kalaimani rachel...
  • 2 篇 yuan deming
  • 2 篇 miyashita megumi
  • 2 篇 shiyan d. n.
  • 1 篇 zhang ning
  • 1 篇 lan g.
  • 1 篇 fang chang
  • 1 篇 duchi john c.
  • 1 篇 nemirovski a.
  • 1 篇 kolnogorov alexa...
  • 1 篇 ho daniel w. c.
  • 1 篇 kolnogorov a. v
  • 1 篇 nazin a. v
  • 1 篇 juditsky a.

语言

  • 15 篇 英文
  • 2 篇 其他
检索条件"主题词=Mirror descent algorithm"
17 条 记 录,以下是11-20 订阅
排序:
Saddle point approximation approaches for two-stage robust optimization problems
收藏 引用
JOURNAL OF GLOBAL OPTIMIZATION 2020年 第4期78卷 651-670页
作者: Zhang, Ning Fang, Chang Dongguan Univ Technol Sch Comp Sci & Technol Dongguan 523808 Guangdong Peoples R China Anhui Normal Univ Sch Econ & Management 189 Jiuhua South Rd Wuhu City 241002 Anhui Peoples R China
This paper aims to present improvable and computable approximation approaches for solving the two-stage robust optimization problem, which arises from various applications such as optimal energy management and product... 详细信息
来源: 评论
Distributed constrained optimization with periodic dynamic quantization
收藏 引用
AUTOMATICA 2024年 159卷
作者: Liu, Jie Li, Lulu Ho, Daniel W. C. City Univ Hong Kong Dept Math Hong Kong Peoples R China Hefei Univ Technol Sch Math Hefei 230009 Peoples R China
This paper uses the mirror descent algorithm with periodic dynamic quantization to solve constrained distributed optimization problems with limited communication channels. Due to the imperfect network environment, obt... 详细信息
来源: 评论
ROBUST STOCHASTIC APPROXIMATION APPROACH TO STOCHASTIC PROGRAMMING
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2009年 第4期19卷 1574-1609页
作者: Nemirovski, A. Juditsky, A. Lan, G. Shapiro, A. Georgia Inst Technol Atlanta GA 30332 USA Univ Grenoble 1 F-38041 Grenoble 9 France
In this paper we consider optimization problems where the objective function is given in a form of the expectation. A basic difficulty of solving such stochastic optimization problems is that the involved multidimensi... 详细信息
来源: 评论
Quantizer-based distributed mirror descent for multi-agent convex optimization
Quantizer-based distributed mirror descent for multi-agent c...
收藏 引用
第33届中国控制与决策会议
作者: Menghui Xiong Baoyong Zhang Deming Yuan School of Automation Nanjing University of Science and Technology
This paper is concerned with the constrained distributed multi-agent convex optimization problem over a timevarying *** assume that the bit rate of the considered communication is limited,such that a uniform quantizer... 详细信息
来源: 评论
Convergence Rates of Finite Difference Stochastic Approximation algorithms Part I: General Sampling
Convergence Rates of Finite Difference Stochastic Approximat...
收藏 引用
Conference on Sensing and Analysis Technologies for Biomedical and Cognitive Applications
作者: Dai, Liyi US Army Res Off Div Comp Sci Res Triangle Pk NC 27703 USA
Stochastic optimization is a fundamental problem that finds applications in many areas including biological and cognitive sciences. The classical stochastic approximation algorithm for iterative stochastic optimizatio... 详细信息
来源: 评论
Evaluation of Safe Reinforcement Learning with Comirror algorithm in a Non-Markovian Reward Problem  17th
Evaluation of Safe Reinforcement Learning with CoMirror Algo...
收藏 引用
17th International Conference on Intelligent Autonomous Systems (IAS)
作者: Miyashita, Megumi Yano, Shiro Kondo, Toshiyuki Tokyo Univ Agr & Technol 2-24-16 Naka Cho Koganei Tokyo Japan
In reinforcement learning, an agent in an environment improves the skill depending on a reward, which is the feedback from an environment. For practical, reinforcement learning has several important challenges. First,... 详细信息
来源: 评论
Event-triggered distributed online convex optimization with delayed bandit feedback
收藏 引用
APPLIED MATHEMATICS AND COMPUTATION 2023年 第1期445卷
作者: Xiong, Menghui Zhang, Baoyong Yuan, Deming Zhang, Yijun Chen, Jun Nanjing Univ Sci & Technol Sch Automat Nanjing 210094 Jiangsu Peoples R China Jiangsu Normal Univ Sch Elect Engn & Automat Xuzhou 221116 Jiangsu Peoples R China
This paper is concerned with an online distributed convex-constrained optimization prob-lem over a multi-agent network, where the limited network bandwidth and potential feed-back delay caused by network communication... 详细信息
来源: 评论