This is a summary of the main results presented in the author's PhD thesis, supervised by D. Conforti and P. Beraldi and defended on March 2005. The thesis, written in English, is available from the author upon re...
详细信息
Integrating logical constraints into optimal control problems is not an easy task. In fact, optimal control problems are usually continuous while logical constraints are naturally expressed by integer (binary) variabl...
详细信息
Integrating logical constraints into optimal control problems is not an easy task. In fact, optimal control problems are usually continuous while logical constraints are naturally expressed by integer (binary) variables. In this article we are interested is a particular form of an LQR optimal control problem: the energy (control L-2 norm) is to be minimized, system dynamic is linear and logical constraints on the control use are to be fulfilled. Even if the starting continuous problem is not a complicated one, difficulties arise when integrating the additional logical constraints. First, we will present two different ways of modeling the problem, both of them leading us to mixedintegerproblems. Furthermore, algorithms (Generalized Outer Approximation, Benders Decomposition and Branch and Cut) are applied on each model and results analyzed. We also present a Benders Decomposition algorithm variant that is adapted to our problem (taking into account its particular form) and we will conclude by looking at the optimal solutions obtained in an interesting physical example: the harmonic spring.
暂无评论