咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程
  • 1 篇 理学
    • 1 篇 数学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 2 篇 mixed-integer se...
  • 1 篇 approximation al...
  • 1 篇 doa estimation
  • 1 篇 row-sparse pca
  • 1 篇 joint sparsity
  • 1 篇 l(2,0)-mixed-nor...
  • 1 篇 sparse truncated...
  • 1 篇 multiple measure...
  • 1 篇 maximum a poster...
  • 1 篇 branch-and-cut a...

机构

  • 1 篇 georgia inst tec...
  • 1 篇 tech univ darmst...
  • 1 篇 tech univ darmst...
  • 1 篇 ilmenau univ tec...

作者

  • 1 篇 pesavento marius
  • 1 篇 li yongchun
  • 1 篇 sorg alexander
  • 1 篇 xie weijun
  • 1 篇 matter frederic
  • 1 篇 pfetsch marc e.
  • 1 篇 liu tianyi
  • 1 篇 haardt martin

语言

  • 2 篇 英文
检索条件"主题词=Mixed-integer semidefinite program"
2 条 记 录,以下是1-10 订阅
排序:
Joint Sparse Estimation with Cardinality Constraint via mixed-integer semidefinite programming  9
Joint Sparse Estimation with Cardinality Constraint via Mixe...
收藏 引用
9th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
作者: Liu, Tianyi Matter, Frederic Sorg, Alexander Pfetsch, Marc E. Haardt, Martin Pesavento, Marius Tech Univ Darmstadt Commun Syst Grp Darmstadt Germany Tech Univ Darmstadt Res Grp Optimizat Darmstadt Germany Ilmenau Univ Technol Commun Res Lab Ilmenau Germany
The multiple measurement vectors (MMV) problem refers to the joint estimation of multiple signal realizations where the signal samples share a common sparse support over a known dictionary, which is a fundamental chal... 详细信息
来源: 评论
Beyond symmetry: best submatrix selection for the sparse truncated SVD
收藏 引用
MATHEMATICAL programMING 2024年 第1-2期208卷 1-50页
作者: Li, Yongchun Xie, Weijun Georgia Inst Technol Atlanta GA 30332 USA
The truncated singular value decomposition (SVD), also known as the best low-rank matrix approximation with minimum error measured by a unitarily invariant norm, has been applied to many domains such as biology, healt... 详细信息
来源: 评论