咨询与建议

限定检索结果

文献类型

  • 137 篇 期刊文献
  • 7 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 145 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 144 篇 工学
    • 138 篇 控制科学与工程
    • 129 篇 电气工程
    • 7 篇 计算机科学与技术...
    • 3 篇 机械工程
    • 2 篇 交通运输工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 土木工程
    • 1 篇 船舶与海洋工程
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 海洋科学

主题

  • 145 篇 model learning f...
  • 22 篇 robots
  • 17 篇 dynamics
  • 16 篇 machine learning...
  • 16 篇 optimization and...
  • 14 篇 learning and ada...
  • 13 篇 reinforcement le...
  • 10 篇 model predictive...
  • 9 篇 modeling
  • 9 篇 task analysis
  • 9 篇 medical robots a...
  • 9 篇 motion control
  • 9 篇 deep learning me...
  • 8 篇 calibration and ...
  • 8 篇 computational mo...
  • 8 篇 predictive model...
  • 8 篇 adaptation model...
  • 7 篇 control
  • 7 篇 motion and path ...
  • 7 篇 trajectory

机构

  • 4 篇 mit dept mech en...
  • 3 篇 swiss fed inst t...
  • 2 篇 univ sci & techn...
  • 2 篇 univ michigan me...
  • 2 篇 kyoto univ grad ...
  • 2 篇 mit comp sci & a...
  • 2 篇 swiss fed inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 harvard univ joh...
  • 2 篇 univ padua dept ...
  • 2 篇 univ calif san d...
  • 2 篇 tech univ darmst...
  • 2 篇 univ maryland de...
  • 2 篇 univ sci & techn...
  • 2 篇 ecole polytech f...
  • 2 篇 czech tech univ ...
  • 2 篇 agcy def dev gro...
  • 2 篇 univ penn grasp ...
  • 2 篇 harvard univ sch...
  • 2 篇 hong kong univ s...

作者

  • 4 篇 schoellig angela...
  • 4 篇 matsubara takami...
  • 3 篇 derner erik
  • 3 篇 billard aude
  • 3 篇 fu xun
  • 3 篇 dalla libera alb...
  • 3 篇 babuska robert
  • 3 篇 bruder daniel
  • 3 篇 kubalik jiri
  • 3 篇 vasudevan ram
  • 3 篇 hutter marco
  • 3 篇 morimoto jun
  • 3 篇 asada h. harry
  • 3 篇 zeilinger melani...
  • 3 篇 peters jan
  • 2 篇 carron andrea
  • 2 篇 arcari elena
  • 2 篇 tang zhi qiang
  • 2 篇 romeres diego
  • 2 篇 oriolo giuseppe

语言

  • 144 篇 英文
  • 1 篇 其他
检索条件"主题词=Model Learning for Control"
145 条 记 录,以下是1-10 订阅
排序:
Variable-Frequency model learning and Predictive control for Jumping Maneuvers on Legged Robots
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第2期10卷 1321-1328页
作者: Nguyen, Chuong Altawaitan, Abdullah Duong, Thai Atanasov, Nikolay Nguyen, Quan Univ Southern Calif Dept Aerosp & Mech Engn Los Angeles CA 90007 USA Univ Calif San Diego Dept Elect & Comp Engn La Jolla CA 92093 USA Kuwait Univ Safat 13060 Kuwait
Achieving both target accuracy and robustness in dynamic maneuvers with long flight phases, such as high or long jumps, has been a significant challenge for legged robots. To address this challenge, we propose a novel... 详细信息
来源: 评论
SOLAR-GP: Sparse Online Locally Adaptive Regression Using Gaussian Processes for Bayesian Robot model learning and control
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 2832-2839页
作者: Wilcox, Brian Yip, Michael C. Univ Calif San Diego Dept Elect & Comp Engn La Jolla CA 92093 USA
Machine learning methods have been widely used in robot control to learn inverse mappings. These methods are used to capture the entire non-linearities and non-idealities of a system that make geometric or phenomenolo... 详细信息
来源: 评论
Delayed Dynamic model Scheduled Reinforcement learning With Time-Varying Delays for Robotic control
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第3期10卷 2646-2653页
作者: Wang, Zechang Xing, Dengpeng Yang, Yiming Wang, Peng Univ Chinese Acad Sci Beijing 101408 Peoples R China Chinese Acad Sci Inst Automat Beijing 100045 Peoples R China
Reinforcement learning (RL) typically presupposes instantaneous agent-environment interactions, but in real-world scenarios such as robotic control, overlooking observation delays can significantly impair performance.... 详细信息
来源: 评论
Active learning of Discrete-Time Dynamics for Uncertainty-Aware model Predictive control
收藏 引用
IEEE TRANSACTIONS ON ROBOTICS 2024年 40卷 1273-1291页
作者: Saviolo, Alessandro Frey, Jonathan Rathod, Abhishek Diehl, Moritz Loianno, Giuseppe NYU Tandon Sch Engn New York NY 11201 USA Univ Freiburg D-79110 Freiburg Germany
model-based control requires an accurate model of the system dynamics for precisely and safely controlling the robot in complex and dynamic environments. Moreover, in presence of variations in the operating conditions... 详细信息
来源: 评论
learning-Based Force control of Twisted String Actuators Using a Neural Network-Based Inverse model
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2024年 第9期9卷 8170-8177页
作者: Kwon, Hyeokjun Kim, Sung-Woo Joe, Hyun-Min Kyungpook Natl Univ Dept Robot & Smart Syst Engn Daegu 41566 South Korea Samsung Elect Robot Ctr Samsung Res Seoul 06765 South Korea
In this letter, we propose learning-based force control of twisted string actuators (TSAs) using a neural network-based inverse model. A learning-based force controller is designed using the input and output data of T... 详细信息
来源: 评论
Real-Time Neural MPC: Deep learning model Predictive control for Quadrotors and Agile Robotic Platforms
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2023年 第4期8卷 2397-2404页
作者: Salzmann, Tim Kaufmann, Elia Arrizabalaga, Jon Pavone, Marco Scaramuzza, Davide Ryll, Markus Tech Univ Munich D-85521 Munich Germany Univ Zurich CH-8050 Zurich Switzerland Stanford Univ Stanford CA 94305 USA NVIDIA Res Stanford CA 94305 USA Tech Univ Munich D-85521 Munich Germany Munich Inst Robot & Machine Intelligence MIRMI D-80992 Munich Germany
model Predictive control (MPC) has become a popular framework in embedded control for high-performance autonomous systems. However, to achieve good control performance using MPC, an accurate dynamics model is key. To ... 详细信息
来源: 评论
A model Predictive control Approach for USV Autonomous Cruising via Disturbance learning  18
A Model Predictive Control Approach for USV Autonomous Cruis...
收藏 引用
IEEE 18th International Conference on control and Automation (ICCA)
作者: Cheng, Maotong Yao, Jinke Ren, Qinyuan Zhejiang Univ Control Sci & Engn Hangzhou Peoples R China
Unmanned surface vehicles (USVs) are widely applied in ocean exploration and environmental protection. To ensure efficient execution of tasks, the motion control of USV is essential and critical. However, the hydrodyn... 详细信息
来源: 评论
Nonlinear model learning for Compensation and Feedforward control of Real-World Hydraulic Actuators Using Gaussian Processes
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第4期7卷 9525-9532页
作者: Taheri, Abdolreza Gustafsson, Pelle Rosth, Marcus Ghabcheloo, Reza Pajarinen, Joni HIAB Control Syst R&D S-82450 Hudiksvall Sweden Tampere Univ Fac Engn & Nat Sci Tampere 33100 Finland Aalto Univ Dept Elect Engn & Automat Espoo 02150 Finland Tech Univ Darmstadt Intelligent Autonomous Syst D-64289 Darmstadt Germany
This paper presents a robust machine learning framework for modeling and control of hydraulic actuators. We identify several important challenges concerning learning accurate models of the dynamics for real machines, ... 详细信息
来源: 评论
learning-Based model Predictive control for Autonomous Racing
收藏 引用
WORLD ELECTRIC VEHICLE JOURNAL 2023年 第7期14卷 163页
作者: Pinho, Joao Costa, Gabriel Lima, Pedro U. U. Ayala Botto, Miguel Univ Lisbon Inst Super Tecn Ave Rovisco Pais 1 P-1049001 Lisbon Portugal Univ Lisbon IDMEC Inst Super Tecn Ave Rovisco Pais 1 P-1049001 Lisbon Portugal
In this paper, we present the adaptation of the terminal component learning-based model predictive control (TC-LMPC) architecture for autonomous racing to the Formula Student Driverless (FSD) context. We test the TC-L... 详细信息
来源: 评论
A Probabilistic model-Based Online learning Optimal control Algorithm for Soft Pneumatic Actuators
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 1437-1444页
作者: Tang, Zhi Qiang Heung, Ho Lam Tong, Kai Yu Li, Zheng Chinese Univ Hong Kong Dept Biomed Engn Hong Kong Peoples R China Chinese Univ Hong Kong Dept Surg Hong Kong Peoples R China Chinese Univ Hong Kong Chow Yuk Ho Technol Ctr Innovat Med Hong Kong Peoples R China
Soft robots are increasingly being employed in different fields and various designs are created to satisfy relevant requirements. The wide ranges of design bring challenges to soft robotic control in that a unified co... 详细信息
来源: 评论