咨询与建议

限定检索结果

文献类型

  • 137 篇 期刊文献
  • 7 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 145 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 144 篇 工学
    • 138 篇 控制科学与工程
    • 129 篇 电气工程
    • 7 篇 计算机科学与技术...
    • 3 篇 机械工程
    • 2 篇 交通运输工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 土木工程
    • 1 篇 船舶与海洋工程
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 海洋科学

主题

  • 145 篇 model learning f...
  • 22 篇 robots
  • 17 篇 dynamics
  • 16 篇 machine learning...
  • 16 篇 optimization and...
  • 14 篇 learning and ada...
  • 13 篇 reinforcement le...
  • 10 篇 model predictive...
  • 9 篇 modeling
  • 9 篇 task analysis
  • 9 篇 medical robots a...
  • 9 篇 motion control
  • 9 篇 deep learning me...
  • 8 篇 calibration and ...
  • 8 篇 computational mo...
  • 8 篇 predictive model...
  • 8 篇 adaptation model...
  • 7 篇 control
  • 7 篇 motion and path ...
  • 7 篇 trajectory

机构

  • 4 篇 mit dept mech en...
  • 3 篇 swiss fed inst t...
  • 2 篇 univ sci & techn...
  • 2 篇 univ michigan me...
  • 2 篇 kyoto univ grad ...
  • 2 篇 mit comp sci & a...
  • 2 篇 swiss fed inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 harvard univ joh...
  • 2 篇 univ padua dept ...
  • 2 篇 univ calif san d...
  • 2 篇 tech univ darmst...
  • 2 篇 univ maryland de...
  • 2 篇 univ sci & techn...
  • 2 篇 ecole polytech f...
  • 2 篇 czech tech univ ...
  • 2 篇 agcy def dev gro...
  • 2 篇 univ penn grasp ...
  • 2 篇 harvard univ sch...
  • 2 篇 hong kong univ s...

作者

  • 4 篇 schoellig angela...
  • 4 篇 matsubara takami...
  • 3 篇 derner erik
  • 3 篇 billard aude
  • 3 篇 fu xun
  • 3 篇 dalla libera alb...
  • 3 篇 babuska robert
  • 3 篇 bruder daniel
  • 3 篇 kubalik jiri
  • 3 篇 vasudevan ram
  • 3 篇 hutter marco
  • 3 篇 morimoto jun
  • 3 篇 asada h. harry
  • 3 篇 zeilinger melani...
  • 3 篇 peters jan
  • 2 篇 carron andrea
  • 2 篇 arcari elena
  • 2 篇 tang zhi qiang
  • 2 篇 romeres diego
  • 2 篇 oriolo giuseppe

语言

  • 144 篇 英文
  • 1 篇 其他
检索条件"主题词=Model Learning for Control"
145 条 记 录,以下是91-100 订阅
排序:
Data-Driven control of Soft Robots Using Koopman Operator Theory
收藏 引用
IEEE TRANSACTIONS ON ROBOTICS 2021年 第3期37卷 948-961页
作者: Bruder, Daniel Fu, Xun Gillespie, R. Brent Remy, C. David Vasudevan, Ram Univ Michigan Dept Mech Engn Ann Arbor MI 48109 USA Harvard Univ John A Paulson Sch Engn & Appl Sci Cambridge MA 02138 USA Univ Stuttgart Inst Nonlinear Mech D-70174 Stuttgart Germany
controlling soft robots with precision is a challenge due to the difficulty of constructing models that are amenable to model-based control design techniques. Koopman operator theory offers a way to construct explicit... 详细信息
来源: 评论
Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement learning
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第4期6卷 7262-7269页
作者: Cai, Peide Wang, Hengli Huang, Huaiyang Liu, Yuxuan Liu, Ming Hong Kong Univ Sci & Technol Hong Kong Peoples R China
Autonomous car racing is a challenging task in the robotic control area. Traditional modular methods require accurate mapping, localization and planning, which makes them computationally inefficient and sensitive to e... 详细信息
来源: 评论
Recurrent Convex Difference Neural Networks for Safety-Critical model Predictive control
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第6期10卷 6400-6407页
作者: Chen, Hanlong Wang, Yang Lin, Wang Ding, Zuohua Zhejiang Sci Tech Univ Sch Comp Sci & Technol Hangzhou 310018 Zhejiang Peoples R China Zhejiang Normal Univ Sch Comp Sci & Technol Jinhua 321004 Peoples R China
Optimal control and planning with safety considerations constitute a fundamental challenge in model predictive control (MPC) applications, which has recently been addressed by integrating control Barrier Functions (CB... 详细信息
来源: 评论
Advantages of Bilinear Koopman Realizations for the modeling and control of Systems With Unknown Dynamics
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第3期6卷 4369-4376页
作者: Bruder, Daniel Fu, Xun Vasudevan, Ram Harvard Univ Sch Engn & Appl Sci Cambridge MA 02138 USA Univ Michigan Mech Engn Dept Ann Arbor MI 48109 USA
Nonlinear dynamical systems can be made easier to control by lifting them into the space of observable functions, where their evolution is described by the linear Koopman operator. This letter describes how the Koopma... 详细信息
来源: 评论
learning Optimal Impedance control During Complex 3D Arm Movements
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 1248-1255页
作者: Naceri, Abdeldjallil Schumacher, Tobias Li, Qiang Calinon, Sylvain Ritter, Helge Tech Univ Munich TUM Munich Sch Robot & Machine Intelligence MSRM Munich Germany Bielefeld Univ Neuroinformat Grp D-33619 Bielefeld Germany Bielefeld Univ CITEC D-33619 Bielefeld Germany Idiap Res Inst CH-1920 Martigny Switzerland
Humans use their limbs to perform various movements to interact with an external environment. Thanks to limb's variable and adaptive stiffness, humans can adapt their movements to the external unstable dynamics. T... 详细信息
来源: 评论
Neural Identification for control
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第3期6卷 4648-4655页
作者: Saha, Priyabrata Egerstedt, Magnus Mukhopadhyay, Saibal Georgia Tech Sch Elect & Comp Engn Atlanta GA 30332 USA
We present a new method for learning control law that stabilizes an unknown nonlinear dynamical system at an equilibrium point. We formulate a system identification task in a self-supervised learning setting that join... 详细信息
来源: 评论
Bayesian Neural Network modeling and Hierarchical MPC for a Tendon-Driven Surgical Robot With Uncertainty Minimization
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 2642-2649页
作者: Cursi, Francesco Modugno, Valerio Lanari, Leonardo Oriolo, Giuseppe Kormushev, Petar Imperial Coll London Hamlyn Ctr Exhibit Rd London England Imperial Coll London Robot Intelligence Lab London England Sapienza Univ Roma Dipartimento Ingn Informat Automat & Gest I-00185 Rome Italy
In order to guarantee precision and safety in robotic surgery, accurate models of the robot and proper control strategies are needed. Bayesian Neural Networks (BNN) are capable of learning complex models and provide i... 详细信息
来源: 评论
Meta learning With Paired Forward and Inverse models for Efficient Receding Horizon control
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 3240-3247页
作者: McKinnon, Christopher Schoellig, Angela P. Univ Toronto Dynam Syst Lab Inst Aerosp Studies Toronto ON M3H 5T6 Canada Vector Inst Artificial Intelligence Toronto ON M3H 5T6 Canada
This paper presents a model-learning method for Stochastic model Predictive control (SMPC) that is both accurate and computationally efficient. We assume that the control input affects the robot dynamics through an un... 详细信息
来源: 评论
Disruption-Resistant Deformable Object Manipulation on Basis of Online Shape Estimation and Prediction-Driven Trajectory Correction
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 3809-3816页
作者: Tanaka, Daisuke Arnold, Solvi Yamazaki, Kimitoshi Shinshu Univ Grad Sch Med Sci & Technol Dept Sci & Technol Nagano 3808553 Japan Shinshu Univ Dept Mech Syst Engn Nagano 3808553 Japan
We consider the problem of deformable object manipulation with variable goal states and mid-manipulation disruptions. We propose an approach that integrates online shape estimation, prediction of shape transitions, an... 详细信息
来源: 评论
Using Deep-learning Proximal Policy Optimization to Solve the Inverse Kinematics of Endoscopic Instruments
IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS
收藏 引用
IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 2021年 第1期3卷 273-276页
作者: Schmitz, Andreas Berthet-Rayne, Pierre Imperial Coll London Hamlyn Ctr Robot Surg London SW7 2AZ England
There is currently a trend towards small tendon-driven robotic devices targeting endoscopic applications. As these robotic systems aim to navigate within narrow tortuous pathways, their joint arrangement must be longi... 详细信息
来源: 评论