咨询与建议

限定检索结果

文献类型

  • 137 篇 期刊文献
  • 7 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 145 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 144 篇 工学
    • 138 篇 控制科学与工程
    • 129 篇 电气工程
    • 7 篇 计算机科学与技术...
    • 3 篇 机械工程
    • 2 篇 交通运输工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 土木工程
    • 1 篇 船舶与海洋工程
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 海洋科学

主题

  • 145 篇 model learning f...
  • 22 篇 robots
  • 17 篇 dynamics
  • 16 篇 machine learning...
  • 16 篇 optimization and...
  • 14 篇 learning and ada...
  • 13 篇 reinforcement le...
  • 10 篇 model predictive...
  • 9 篇 modeling
  • 9 篇 task analysis
  • 9 篇 medical robots a...
  • 9 篇 motion control
  • 9 篇 deep learning me...
  • 8 篇 calibration and ...
  • 8 篇 computational mo...
  • 8 篇 predictive model...
  • 8 篇 adaptation model...
  • 7 篇 control
  • 7 篇 motion and path ...
  • 7 篇 trajectory

机构

  • 4 篇 mit dept mech en...
  • 3 篇 swiss fed inst t...
  • 2 篇 univ sci & techn...
  • 2 篇 univ michigan me...
  • 2 篇 kyoto univ grad ...
  • 2 篇 mit comp sci & a...
  • 2 篇 swiss fed inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 harvard univ joh...
  • 2 篇 univ padua dept ...
  • 2 篇 univ calif san d...
  • 2 篇 tech univ darmst...
  • 2 篇 univ maryland de...
  • 2 篇 univ sci & techn...
  • 2 篇 ecole polytech f...
  • 2 篇 czech tech univ ...
  • 2 篇 agcy def dev gro...
  • 2 篇 univ penn grasp ...
  • 2 篇 harvard univ sch...
  • 2 篇 hong kong univ s...

作者

  • 4 篇 schoellig angela...
  • 4 篇 matsubara takami...
  • 3 篇 derner erik
  • 3 篇 billard aude
  • 3 篇 fu xun
  • 3 篇 dalla libera alb...
  • 3 篇 babuska robert
  • 3 篇 bruder daniel
  • 3 篇 kubalik jiri
  • 3 篇 vasudevan ram
  • 3 篇 hutter marco
  • 3 篇 morimoto jun
  • 3 篇 asada h. harry
  • 3 篇 zeilinger melani...
  • 3 篇 peters jan
  • 2 篇 carron andrea
  • 2 篇 arcari elena
  • 2 篇 tang zhi qiang
  • 2 篇 romeres diego
  • 2 篇 oriolo giuseppe

语言

  • 144 篇 英文
  • 1 篇 其他
检索条件"主题词=Model Learning for Control"
145 条 记 录,以下是111-120 订阅
排序:
Discovering Interpretable Dynamics by Sparsity Promotion on Energy and the Lagrangian
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 2154-2160页
作者: Chu, Hoang K. Hayashibe, Mitsuhiro Tohoku Univ Grad Sch Engn Dept Robot Neurorobot Lab Sendai Miyagi 9808579 Japan
Data-driven modeling frameworks that adopt sparse regression techniques, such as sparse identification of nonlinear dynamics (SINDy) and its modifications, are developed to resolve difficulties in extracting underlyin... 详细信息
来源: 评论
model-Based Reinforcement learning for Physical Systems Without Velocity and Acceleration Measurements
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 3548-3555页
作者: Dalla Libera, Alberto Romeres, Diego Jha, Devesh K. Yerazunis, Bill Nikovski, Daniel Univ Padua Dept Informat Engn I-35131 Padua Italy Mitsubishi Elect Res Labs Cambridge MA 02139 USA
In this letter, we propose a derivative-free model learning framework for Reinforcement learning (RL) algorithms based on Gaussian Process Regression (GPR). In many mechanical systems, only positions can be measured b... 详细信息
来源: 评论
Heteroscedastic Uncertainty for Robust Generative Latent Dynamics
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第4期5卷 6654-6661页
作者: Limoyo, Oliver Chan, Bryan Maric, Filip Wagstaff, Brandon Mahmood, A. Rupam Kelly, Jonathan Univ Toronto Space & Terr Autonomous Robot Syst STARS Lab Inst Aerosp Studies UTIAS Toronto ON M3H 5T6 Canada Univ Zagreb Lab Autonomous Syst & Mobile Robot LAMOR Zagreb 10000 Croatia Univ Alberta Reinforcement Learning & Artificial Intelligence Edmonton AB T6G 2R3 Canada
learning or identifying dynamics from a sequence of high-dimensional observations is a difficult challenge in many domains, including reinforcement learning, and control. The problem has recently been studied from a g... 详细信息
来源: 评论
Investigation of a Hybrid Kinematic Calibration Method for the "Sina" Surgical Robot
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第4期5卷 5276-5282页
作者: Alamdar, Alireza Samandi, Pouya Hanifeh, Shahrzad Kheradmand, Pejman Mirbagheri, Alireza Farahmand, Farzam Sarkar, Saeed Univ Tehran Med Sci Res Ctr Biomed Technol & Robot RCBTR Adv Med Technol & Equipment Inst AMTEI Tehran *** Iran Johns Hopkins Univ Lab Computat Sensing & Robot Baltimore MD 21218 USA Univ Tehran Med Sci Med Phys & Biomed Engn Dept Sch Med Tehran *** Iran Sharif Univ Technol Dept Mech Engn Tehran *** Iran
Calibrating the inverse kinematics of complex robots is often a challenging task. Finding analytical solutions is not always possible and the convergence of numerical methods is not guaranteed. The model-free approach... 详细信息
来源: 评论
Benchmark for Bimanual Robotic Manipulation of Semi-Deformable Objects
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 2443-2450页
作者: Chatzilygeroudis, Konstantinos Fichera, Bernardo Lauzana, Ilaria Bu, Fanjun Yao, Kunpeng Khadivar, Farshad Billard, Aude Ecole Polytech Fed Lausanne Learning Algorithms & Syst Lab CH-1015 Lausanne Switzerland Johns Hopkins Univ Baltimore MD 21218 USA
We propose a new benchmarking protocol to evaluate algorithms for bimanual robotic manipulation semi-deformable objects. The benchmark is inspired from two real-world applications: (a) watchmaking craftsmanship, and (... 详细信息
来源: 评论
A Data-Driven Approach to Prediction and Optimal Bucket-Filling control for Autonomous Excavators
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 2682-2689页
作者: Sandzimier, Ryan J. Asada, H. Harry MIT Dept Mech Engn Cambridge MA 02139 USA
We develop a data-driven, statistical control method for autonomous excavators. Interactions between soil and an excavator bucket are highly complex and nonlinear, making traditional physical modeling difficult to use... 详细信息
来源: 评论
model-Based Generalization Under Parameter Uncertainty Using Path Integral control
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 2864-2871页
作者: Abraham, Ian Handa, Ankur Ratliff, Nathan Lowrey, Kendall Murphey, Todd D. Fox, Dieter NVIDIA Santa Clara CA 95050 USA Northwestern Univ Evanston IL 60208 USA Univ Washington Seattle WA 98105 USA Northwestern Univ Evanston IL 60208 USA
This letter addresses the problem of robot interaction in complex environments where online control and adaptation is necessary. By expanding the sample space in the free energy formulation of path integral control, w... 详细信息
来源: 评论
Real-Time Nonlinear model Predictive control of Robots Using a Graphics Processing Unit
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 1468-1475页
作者: Hyatt, Phillip Killpack, Marc D. Brigham Young Univ Mech Engn Dept Provo UT 84602 USA
In past robotics applications, model Predictive control (MPC) has often been limited to linear models and relatively short time horizons. In recent years however, research in optimization, optimal control, and simulat... 详细信息
来源: 评论
Efficiently Calibrating Cable-Driven Surgical Robots With RGBD Fiducial Sensing and Recurrent Neural Networks
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第4期5卷 5937-5944页
作者: Hwang, Minho Thananjeyan, Brijen Paradis, Samuel Seita, Daniel Ichnowski, Jeffrey Fer, Danyal Low, Thomas Goldberg, Ken Univ Calif Berkeley Berkeley CA 94708 USA UCSF East Bay Oakland CA 94602 USA SRI Int 333 Ravenswood Ave Menlo Pk CA 94025 USA
Automation of surgical subtasks using cable-driven robotic surgical assistants (RSAs) such as Intuitive Surgical's da Vinci Research Kit (dVRK) is challenging due to imprecision in control from cable-related effec... 详细信息
来源: 评论
Cooperative Comfortable-Driving at Signalized Intersections for Connected and Automated Vehicles
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第4期5卷 6247-6254页
作者: Shen, Xun Zhang, Xingguo Ouyang, Tinghui Li, Yuanchao Raksincharoensak, Pongsathorn Tokyo Univ Agr & Technol Dept Mech Syst Engn Koganei Tokyo 1848588 Japan Natl Inst Adv Ind Sci & Technol Artificial Intelligence Res Ctr Tokyo Bay Area Ctr Tokyo 1350064 Japan Honda Res & Dev Co Ltd Honda Innovat Lab Tokyo Tokyo 1076238 Japan
This letter proposes a control framework for Connected and Automated Vehicles(CAVs) to approach the signalized intersections with good driving-comfortability. Both the velocity plan and longitudinal dynamics control a... 详细信息
来源: 评论