咨询与建议

限定检索结果

文献类型

  • 137 篇 期刊文献
  • 7 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 145 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 144 篇 工学
    • 138 篇 控制科学与工程
    • 129 篇 电气工程
    • 7 篇 计算机科学与技术...
    • 3 篇 机械工程
    • 2 篇 交通运输工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 土木工程
    • 1 篇 船舶与海洋工程
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 海洋科学

主题

  • 145 篇 model learning f...
  • 22 篇 robots
  • 17 篇 dynamics
  • 16 篇 machine learning...
  • 16 篇 optimization and...
  • 14 篇 learning and ada...
  • 13 篇 reinforcement le...
  • 10 篇 model predictive...
  • 9 篇 modeling
  • 9 篇 task analysis
  • 9 篇 medical robots a...
  • 9 篇 motion control
  • 9 篇 deep learning me...
  • 8 篇 calibration and ...
  • 8 篇 computational mo...
  • 8 篇 predictive model...
  • 8 篇 adaptation model...
  • 7 篇 control
  • 7 篇 motion and path ...
  • 7 篇 trajectory

机构

  • 4 篇 mit dept mech en...
  • 3 篇 swiss fed inst t...
  • 2 篇 univ sci & techn...
  • 2 篇 univ michigan me...
  • 2 篇 kyoto univ grad ...
  • 2 篇 mit comp sci & a...
  • 2 篇 swiss fed inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 harvard univ joh...
  • 2 篇 univ padua dept ...
  • 2 篇 univ calif san d...
  • 2 篇 tech univ darmst...
  • 2 篇 univ maryland de...
  • 2 篇 univ sci & techn...
  • 2 篇 ecole polytech f...
  • 2 篇 czech tech univ ...
  • 2 篇 agcy def dev gro...
  • 2 篇 univ penn grasp ...
  • 2 篇 harvard univ sch...
  • 2 篇 hong kong univ s...

作者

  • 4 篇 schoellig angela...
  • 4 篇 matsubara takami...
  • 3 篇 derner erik
  • 3 篇 billard aude
  • 3 篇 fu xun
  • 3 篇 dalla libera alb...
  • 3 篇 babuska robert
  • 3 篇 bruder daniel
  • 3 篇 kubalik jiri
  • 3 篇 vasudevan ram
  • 3 篇 hutter marco
  • 3 篇 morimoto jun
  • 3 篇 asada h. harry
  • 3 篇 zeilinger melani...
  • 3 篇 peters jan
  • 2 篇 carron andrea
  • 2 篇 arcari elena
  • 2 篇 tang zhi qiang
  • 2 篇 romeres diego
  • 2 篇 oriolo giuseppe

语言

  • 144 篇 英文
  • 1 篇 其他
检索条件"主题词=Model Learning for Control"
145 条 记 录,以下是121-130 订阅
排序:
Data-Efficient and Safe learning for Humanoid Locomotion Aided by a Dynamic Balancing model
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第3期5卷 4376-4383页
作者: Ahn, Junhyeok Lee, Jaemin Sentis, Luis Univ Texas Austin Dept Mech Engn Austin TX 78712 USA Univ Texas Austin Dept Aerosp Engn & Engn Mech Austin TX 78712 USA
In this letter, we formulate a novel Markov Decision Process (MDP) for safe and data-efficient learning for humanoid locomotion aided by a dynamic balancing model. In our previous studies of biped locomotion, we relie... 详细信息
来源: 评论
Aggressive Perception-Aware Navigation Using Deep Optical Flow Dynamics and PixelMPC
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第2期5卷 1207-1214页
作者: Lee, Keuntaek Gibson, Jason Theodorou, Evangelos A. Georgia Inst Technol Autonomous Control & Decis Syst Lab Atlanta GA 30332 USA
Recently, vision-based control has gained traction by leveraging the power of machine learning. In this work, we couple a model predictive control (MPC) framework to a visual pipeline. We introduce deep optical flow (... 详细信息
来源: 评论
q-VAE for Disentangled Representation learning and Latent Dynamical Systems
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第4期5卷 5669-5676页
作者: Kobayashis, Taisuke Nara Inst Sci & Technol Div Informat Sci Nara 6300192 Japan
A variational autoencoder (VAE) derived from Tsallis statistics called q-VAE is proposed. In the proposed method, a standard VAE is employed to statistically extract latent space hidden in sampled data, and this laten... 详细信息
来源: 评论
learning Dynamics for Improving control of Overactuated Flying Systems
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2020年 第4期5卷 5283-5290页
作者: Zhang, Weixuan Brunner, Maximilian Ott, Lionel Kamel, Mina Siegwart, Roland Nieto, Juan Swiss Fed Inst Technol Autonomous Syst Lab Dept Mech & Proc Engn CH-8092 Zurich Switzerland Univ Sydney Camperdown NSW 2006 Australia
Overactuated omnidirectional flying vehicles are capable of generating force and torque in any direction, which is important for applications such as contact-based industrial inspection. This comes at the price of an ... 详细信息
来源: 评论
learning dynamical systems with bifurcations
收藏 引用
ROBOTICS AND AUTONOMOUS SYSTEMS 2021年 136卷 103700-103700页
作者: Khadivar, Farshad Lauzana, Ilaria Billard, Aude Ecole Polytech Fed Lausanne EPFL Learning Algorithms & Syst Lab LASA Route Cantonale CH-1015 Lausanne Switzerland
Trajectory planning through dynamical systems (DS) provides robust control for robots and has found numerous applications from locomotion to manipulation. However, to date, DS for controlling rhythmic patterns are dis... 详细信息
来源: 评论
Multi-objective symbolic regression for physics-aware dynamic modeling
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2021年 182卷 1页
作者: Kubalik, Jiri Derner, Erik Babuska, Robert Czech Tech Univ Czech Inst Informat Robot & Cybernet Prague 16000 Czech Republic Czech Tech Univ Fac Elect Engn Dept Control Engn Prague 16627 Czech Republic Delft Univ Technol Cognit Robot NL-2628 CD Delft Netherlands
Virtually all dynamic system control methods benefit from the availability of an accurate mathematical model of the system. This includes also methods like reinforcement learning, which can be vastly sped up and made ... 详细信息
来源: 评论
Provably Robust learning-Based Approach for High-Accuracy Tracking control of Lagrangian Systems
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2019年 第2期4卷 1587-1594页
作者: Helwa, Mohamed K. Heins, Adam Schoellig, Angela P. Univ Toronto Inst Aerosp Studies Dynam Syst Lab Toronto ON M3H 5T6 Canada Cairo Univ Dept Elect Power & Machines Giza 12613 Egypt
Lagrangian systems represent a wide range of robotic systems, including manipulators, wheeled and legged robots, and quadrotors. Inverse dynamics control and feedforward linearization are typically used to convert the... 详细信息
来源: 评论
Learn Fast, Forget Slow: Safe Predictive learning control for Systems With Unknown and Changing Dynamics Performing Repetitive Tasks
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2019年 第2期4卷 2180-2187页
作者: McKinnon, Christopher D. Schoellig, Angela P. Univ Toronto Inst Aerosp Studies Dynam Syst Lab N York ON M3H 5T6 Canada
We present a control method for improved repetitive path following for a ground vehicle that is geared toward long-term operation, where the operating conditions can change over time and are initially unknown. We use ... 详细信息
来源: 评论
Autonomous Precision Pouring From Unknown Containers
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2019年 第3期4卷 2317-2324页
作者: Kennedy, Monroe Schmeckpeper, Karl Thakur, Dinesh Jiang, Chenfanfu Kumar, Vijay Daniilidis, Kostas Univ Penn Grasp Lab Philadelphia PA 19104 USA Univ Penn SIG Ctr Comp Graph Philadelphia PA 19104 USA
We autonomously pour from unknown symmetric containers found in a typical wet laboratory for the development of a robot-assisted, rapid experiment preparation system. The robot estimates the pouring container symmetri... 详细信息
来源: 评论
Robot Cooperative Behavior learning Using Single-Shot learning From Demonstration and Parallel Hidden Markov models
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2019年 第2期4卷 193-200页
作者: Lafleche, Jean-Francois Saunderson, Shane Nejat, Goldie Univ Toronto Dept Mech & Ind Engn Autonomous Syst & Biomechatron Lab Toronto ON M6S3G8 Canada
For robots to become collaborative assistants, they need to be capable of naturally interacting with users in real environments. They also need to be able to learn new skills from non-expert users. In this letter, we ... 详细信息
来源: 评论