咨询与建议

限定检索结果

文献类型

  • 137 篇 期刊文献
  • 7 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 145 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 144 篇 工学
    • 138 篇 控制科学与工程
    • 129 篇 电气工程
    • 7 篇 计算机科学与技术...
    • 3 篇 机械工程
    • 2 篇 交通运输工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 土木工程
    • 1 篇 船舶与海洋工程
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 海洋科学

主题

  • 145 篇 model learning f...
  • 22 篇 robots
  • 17 篇 dynamics
  • 16 篇 machine learning...
  • 16 篇 optimization and...
  • 14 篇 learning and ada...
  • 13 篇 reinforcement le...
  • 10 篇 model predictive...
  • 9 篇 modeling
  • 9 篇 task analysis
  • 9 篇 medical robots a...
  • 9 篇 motion control
  • 9 篇 deep learning me...
  • 8 篇 calibration and ...
  • 8 篇 computational mo...
  • 8 篇 predictive model...
  • 8 篇 adaptation model...
  • 7 篇 control
  • 7 篇 motion and path ...
  • 7 篇 trajectory

机构

  • 4 篇 mit dept mech en...
  • 3 篇 swiss fed inst t...
  • 2 篇 univ sci & techn...
  • 2 篇 univ michigan me...
  • 2 篇 kyoto univ grad ...
  • 2 篇 mit comp sci & a...
  • 2 篇 swiss fed inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 harvard univ joh...
  • 2 篇 univ padua dept ...
  • 2 篇 univ calif san d...
  • 2 篇 tech univ darmst...
  • 2 篇 univ maryland de...
  • 2 篇 univ sci & techn...
  • 2 篇 ecole polytech f...
  • 2 篇 czech tech univ ...
  • 2 篇 agcy def dev gro...
  • 2 篇 univ penn grasp ...
  • 2 篇 harvard univ sch...
  • 2 篇 hong kong univ s...

作者

  • 4 篇 schoellig angela...
  • 4 篇 matsubara takami...
  • 3 篇 derner erik
  • 3 篇 billard aude
  • 3 篇 fu xun
  • 3 篇 dalla libera alb...
  • 3 篇 babuska robert
  • 3 篇 bruder daniel
  • 3 篇 kubalik jiri
  • 3 篇 vasudevan ram
  • 3 篇 hutter marco
  • 3 篇 morimoto jun
  • 3 篇 asada h. harry
  • 3 篇 zeilinger melani...
  • 3 篇 peters jan
  • 2 篇 carron andrea
  • 2 篇 arcari elena
  • 2 篇 tang zhi qiang
  • 2 篇 romeres diego
  • 2 篇 oriolo giuseppe

语言

  • 144 篇 英文
  • 1 篇 其他
检索条件"主题词=Model Learning for Control"
145 条 记 录,以下是141-150 订阅
排序:
Human Intention Detection as a Multiclass Classification Problem: Application in Physical Human-Robot Interaction While Walking
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2018年 第4期3卷 4171-4178页
作者: Lanini, Jessica Razavi, Hamed Urain, Julen Ijspeert, Auke Ecole Polytech Fed Lausanne CH-1015 Lausanne Switzerland IK4 Tekniker Eibar 20600 Spain
In many physical human-robot interaction scenarios, for successful completion of the tasks, robots should he able to recognize the human partner's intention. One of such scenarios that is studied in this letter is... 详细信息
来源: 评论
Three-Dimensional Deformable Object Manipulation Using Fast Online Gaussian Process Regression
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2018年 第2期3卷 979-986页
作者: Hu, Zhe Sun, Peigen Pan, Jia City Univ Hong Kong Dept Mech & Biomed Engn Hong Kong Hong Kong Peoples R China
In this letter, we present a general approach to automatically visual servo control the position and shape of a deformable object whose deformation parameters are unknown. The servo control is achieved by online learn... 详细信息
来源: 评论
Data-driven Construction of Symbolic Process models for Reinforcement learning
Data-driven Construction of Symbolic Process Models for Rein...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Derner, Erik Kubalik, Jiri Babuska, Robert Czech Tech Univ Czech Inst Informat Robot & Cybernet Prague 16636 Czech Republic Czech Tech Univ Dept Control Engn Fac Elect Engn Prague 16627 Czech Republic Delft Univ Technol Cognit Robot Fac 3mE NL-2628 CD Delft Netherlands
Reinforcement learning (RL) is a suitable approach for controlling systems with unknown or time-varying dynamics. RL in principle does not require a model of the system, but before it learns an acceptable policy, it n... 详细信息
来源: 评论
A Comparison of Autoregressive Hidden Markov models for Multimodal Manipulations With Variable Masses
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2017年 第2期2卷 1101-1108页
作者: Kroemer, Oliver Peters, Jan Univ Southern Calif Robot Embedded Syst Lab Los Angeles CA 90089 USA Tech Univ Darmstadt Intelligent Autonomous Syst Grp D-64289 Darmstadt Germany Max Planck Inst Intelligent Syst D-70569 Stuttgart Germany
In contact-based manipulations, the effects of the robot's actions change as contacts are made or broken. For example, if a robot applies an increasing upward force to an object, then the force will eventually ove... 详细信息
来源: 评论
Data-driven Construction of Symbolic Process models for Reinforcement learning
Data-driven Construction of Symbolic Process Models for Rein...
收藏 引用
IEEE International Conference on Robotics and Automation
作者: Erik Derner Jiri Kubalik Robert Babuska Department of Control Engineering Czech Technical University in Prague Prague Czech Republic Czech Institute of Informatics Czech Technical University in Prague Prague Czech Republic Cognitive Robotics Faculty of 3mE Czech Technical University in Prague Prague Czech Republic
Reinforcement learning (RL) is a suitable approach for controlling systems with unknown or time-varying dynamics. RL in principle does not require a model of the system, but before it learns an acceptable policy, it n... 详细信息
来源: 评论