咨询与建议

限定检索结果

文献类型

  • 137 篇 期刊文献
  • 7 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 145 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 144 篇 工学
    • 138 篇 控制科学与工程
    • 129 篇 电气工程
    • 7 篇 计算机科学与技术...
    • 3 篇 机械工程
    • 2 篇 交通运输工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 土木工程
    • 1 篇 船舶与海洋工程
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 海洋科学

主题

  • 145 篇 model learning f...
  • 22 篇 robots
  • 17 篇 dynamics
  • 16 篇 machine learning...
  • 16 篇 optimization and...
  • 14 篇 learning and ada...
  • 13 篇 reinforcement le...
  • 10 篇 model predictive...
  • 9 篇 modeling
  • 9 篇 task analysis
  • 9 篇 medical robots a...
  • 9 篇 motion control
  • 9 篇 deep learning me...
  • 8 篇 calibration and ...
  • 8 篇 computational mo...
  • 8 篇 predictive model...
  • 8 篇 adaptation model...
  • 7 篇 control
  • 7 篇 motion and path ...
  • 7 篇 trajectory

机构

  • 4 篇 mit dept mech en...
  • 3 篇 swiss fed inst t...
  • 2 篇 univ sci & techn...
  • 2 篇 univ michigan me...
  • 2 篇 kyoto univ grad ...
  • 2 篇 mit comp sci & a...
  • 2 篇 swiss fed inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 harvard univ joh...
  • 2 篇 univ padua dept ...
  • 2 篇 univ calif san d...
  • 2 篇 tech univ darmst...
  • 2 篇 univ maryland de...
  • 2 篇 univ sci & techn...
  • 2 篇 ecole polytech f...
  • 2 篇 czech tech univ ...
  • 2 篇 agcy def dev gro...
  • 2 篇 univ penn grasp ...
  • 2 篇 harvard univ sch...
  • 2 篇 hong kong univ s...

作者

  • 4 篇 schoellig angela...
  • 4 篇 matsubara takami...
  • 3 篇 derner erik
  • 3 篇 billard aude
  • 3 篇 fu xun
  • 3 篇 dalla libera alb...
  • 3 篇 babuska robert
  • 3 篇 bruder daniel
  • 3 篇 kubalik jiri
  • 3 篇 vasudevan ram
  • 3 篇 hutter marco
  • 3 篇 morimoto jun
  • 3 篇 asada h. harry
  • 3 篇 zeilinger melani...
  • 3 篇 peters jan
  • 2 篇 carron andrea
  • 2 篇 arcari elena
  • 2 篇 tang zhi qiang
  • 2 篇 romeres diego
  • 2 篇 oriolo giuseppe

语言

  • 144 篇 英文
  • 1 篇 其他
检索条件"主题词=Model Learning for Control"
145 条 记 录,以下是11-20 订阅
排序:
learning-Based model Predictive control for Autonomous Racing
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2019年 第4期4卷 3363-3370页
作者: Kabzan, Juraj Hewing, Lukas Liniger, Alexander Zeilinger, Melanie N. Swiss Fed Inst Technol Inst Dynam Syst & Control CH-8092 Zurich Switzerland Swiss Fed Inst Technol Automat Control Lab CH-8092 Zurich Switzerland
In this letter, we present a learning-based control approach for autonomous racing with an application to the AMZ Driverless race car gotthard. One major issue in autonomous racing is that accurate vehicle models that... 详细信息
来源: 评论
Impedance learning-Based Adaptive Force Tracking for Robot on Unknown Terrains
收藏 引用
IEEE TRANSACTIONS ON ROBOTICS 2025年 41卷 1404-1420页
作者: Li, Yanghong Zheng, Li Wang, Yahao Dong, Erbao Zhang, Shiwu Univ Sci & Technol China Humanoid Robot Inst Dept Precis Machinery & Precis Instrumentat State Key Lab Precis & Intelligent ChemCAS Key La Hefei 230026 Peoples R China
Aiming at the robust force tracking challenge for robots in continuous contact with uncertain environments, a novel adaptive variable impedance control policy based on deep reinforcement learning (DRL) is proposed in ... 详细信息
来源: 评论
learning to model and Plan for Wheeled Mobility on Vertically Challenging Terrain
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第2期10卷 1505-1512页
作者: Datar, Aniket Pan, Chenhui Xiao, Xuesu George Mason Univ Dept Comp Sci Fairfax VA 22030 USA
Most autonomous navigation systems assume wheeled robots are rigid bodies and their 2D planar workspaces can be divided into free spaces and obstacles. However, recent wheeled mobility research, showing that wheeled p... 详细信息
来源: 评论
Garment Diffusion models for Robot-Assisted Dressing
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第2期10卷 1217-1224页
作者: Kotsovolis, Stelios Demiris, Yiannis Imperial Coll London Dept Elect & Elect Engn Personal Robot Lab London SW7 2BT England
Robots have the potential to assist people with disabilities and the elderly. One of the most common and burdensome tasks for caregivers is dressing. Two challenges of robot-assisted dressing are modeling the dynamics... 详细信息
来源: 评论
Cutting Sequence Diffuser: Sim-to-Real Transferable Planning for Object Shaping by Grinding
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第2期10卷 1162-1169页
作者: Hachimine, Takumi Morimoto, Jun Matsubara, Takamitsu Nara Inst Sci & Technol Grad Sch Sci & Technol Div Informat Sci Ikoma Nara 6300192 Japan Kyoto Univ Grad Sch Informat Dept Syst Sci Kyoto 6068501 Japan Adv Telecommun Res Inst Int ATR Brain Informat Commun Res Lab Grp BICR Kyoto 6068501 Japan
Automating object shaping by grinding with a robot is a crucial industrial process that involves removing material with a rotating grinding belt. This process generates removal resistance depending on such process con... 详细信息
来源: 评论
Adaptive control Based Friction Estimation for Tracking control of Robot Manipulators
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第3期10卷 2454-2461页
作者: Huang, Junning Tateo, Davide Liu, Puze Peters, Jan Tech Univ Darmstadt Dept Comp Sci D-64289 Darmstadt Germany German Res Ctr DFKI Res Dept Syst AI Robot Learning D-67663 Kaiserslautern Germany
Adaptive control is often used for friction compensation in trajectory tracking tasks because it does not require torque sensors. However, it has some drawbacks: first, the most common certainty-equivalence adaptive c... 详细信息
来源: 评论
QT-TDM: Planning With Transformer Dynamics model and Autoregressive Q-learning
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第1期10卷 112-119页
作者: Kotb, Mostafa Weber, Cornelius Hafez, Muhammad Burhan Wermter, Stefan Univ Hamburg Dept Informat Knowledge Technol Grp D-22527 Hamburg Germany Aswan Univ Fac Sci Math Dept Aswan 81528 Egypt Univ Southampton Sch Elect & Comp Sci Southampton SO17 1BJ England
Inspired by the success of the Transformer architecture in natural language processing and computer vision, we investigate the use of Transformers in Reinforcement learning (RL), specifically in modeling the environme... 详细信息
来源: 评论
Deep reinforcement learning-based variable impedance control for grinding workpieces with complex geometry
ROBOTIC INTELLIGENCE AND AUTOMATION
收藏 引用
ROBOTIC INTELLIGENCE AND AUTOMATION 2025年 第1期45卷 159-172页
作者: Li, Yanghong Wang, Yahao Li, Zhen Lv, Yingxiang Chai, Jin Dong, Erbao Univ Sci & Technol China Humanoid Robot Inst Dept Precis Machinery & Precis Instrumentat State Key Lab Precis & Intelligent ChemCAS Key La Hefei Peoples R China
PurposeThis paper aims to design a deep reinforcement learning (DRL)-based variable impedance control policy that supports stability analysis for robot force tracking in complex geometric ***/methodology/approachThe D... 详细信息
来源: 评论
Efficient Camera Exposure control for Visual Odometry via Deep Reinforcement learning
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第2期10卷 1609-1616页
作者: Zhang, Shuyang He, Jinhao Zhu, Yilong Wu, Jin Yuan, Jie Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China Hong Kong Univ Sci & Technol GZ Thrust Robot & Autonomous Syst Guangzhou 511453 Peoples R China
The stability of visual odometry (VO) systems is undermined by degraded image quality, especially in environments with significant illumination changes. This study employs a deep reinforcement learning (DRL) framework... 详细信息
来源: 评论
Kinematics-Informed Neural Networks: Enhancing Generalization Performance of Soft Robot model Identification
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2024年 第4期9卷 3068-3075页
作者: Yoon, Taerim Chai, Yoonbyung Jang, Yeonwoo Lee, Hajun Kim, Junghyo Kwon, Jaewoon Kim, Jiyun Choi, Sungjoon Korea Univ Dept Artificial Intelligence Seoul 02577 South Korea Ulsan Natl Inst Sci & Technol Dept Mat Sci & Engn Ulsan 44951 South Korea NAVER LABS Seongnam 13561 Gyeonggi South Korea
A hybrid system combining rigid and soft robots (e.g., soft fingers attached to a rigid arm) ensures safe and dexterous interaction with humans. Nevertheless, modeling complex movements involving both soft and rigid r... 详细信息
来源: 评论