咨询与建议

限定检索结果

文献类型

  • 137 篇 期刊文献
  • 7 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 145 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 144 篇 工学
    • 138 篇 控制科学与工程
    • 129 篇 电气工程
    • 7 篇 计算机科学与技术...
    • 3 篇 机械工程
    • 2 篇 交通运输工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 土木工程
    • 1 篇 船舶与海洋工程
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 海洋科学

主题

  • 145 篇 model learning f...
  • 22 篇 robots
  • 17 篇 dynamics
  • 16 篇 machine learning...
  • 16 篇 optimization and...
  • 14 篇 learning and ada...
  • 13 篇 reinforcement le...
  • 10 篇 model predictive...
  • 9 篇 modeling
  • 9 篇 task analysis
  • 9 篇 medical robots a...
  • 9 篇 motion control
  • 9 篇 deep learning me...
  • 8 篇 calibration and ...
  • 8 篇 computational mo...
  • 8 篇 predictive model...
  • 8 篇 adaptation model...
  • 7 篇 control
  • 7 篇 motion and path ...
  • 7 篇 trajectory

机构

  • 4 篇 mit dept mech en...
  • 3 篇 swiss fed inst t...
  • 2 篇 univ sci & techn...
  • 2 篇 univ michigan me...
  • 2 篇 kyoto univ grad ...
  • 2 篇 mit comp sci & a...
  • 2 篇 swiss fed inst t...
  • 2 篇 univ chinese aca...
  • 2 篇 harvard univ joh...
  • 2 篇 univ padua dept ...
  • 2 篇 univ calif san d...
  • 2 篇 tech univ darmst...
  • 2 篇 univ maryland de...
  • 2 篇 univ sci & techn...
  • 2 篇 ecole polytech f...
  • 2 篇 czech tech univ ...
  • 2 篇 agcy def dev gro...
  • 2 篇 univ penn grasp ...
  • 2 篇 harvard univ sch...
  • 2 篇 hong kong univ s...

作者

  • 4 篇 schoellig angela...
  • 4 篇 matsubara takami...
  • 3 篇 derner erik
  • 3 篇 billard aude
  • 3 篇 fu xun
  • 3 篇 dalla libera alb...
  • 3 篇 babuska robert
  • 3 篇 bruder daniel
  • 3 篇 kubalik jiri
  • 3 篇 vasudevan ram
  • 3 篇 hutter marco
  • 3 篇 morimoto jun
  • 3 篇 asada h. harry
  • 3 篇 zeilinger melani...
  • 3 篇 peters jan
  • 2 篇 carron andrea
  • 2 篇 arcari elena
  • 2 篇 tang zhi qiang
  • 2 篇 romeres diego
  • 2 篇 oriolo giuseppe

语言

  • 144 篇 英文
  • 1 篇 其他
检索条件"主题词=Model Learning for Control"
145 条 记 录,以下是71-80 订阅
排序:
model-Based Policy Search Using Monte Carlo Gradient Estimation With Real Systems Application
收藏 引用
IEEE TRANSACTIONS ON ROBOTICS 2022年 第6期38卷 3879-3898页
作者: Amadio, Fabio Dalla Libera, Alberto Antonello, Riccardo Nikovski, Daniel Carli, Ruggero Romeres, Diego Univ Padua Deptartment Informat Engn I-35131 Padua Italy Mitsubishi Elect Res Labs MERL Cambridge MA 02139 USA
In this article, we present a model-based reinforcement learning (MBRL) algorithm named Monte Carlo probabilistic inference for learning control (MC-PILCO). This algorithm relies on Gaussian processes (GPs) to model t... 详细信息
来源: 评论
Fast Simulation-Based Order Sequence Optimization Assisted by Pre-Trained Bayesian Recurrent Neural Network
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 7818-7825页
作者: Suemitsu, Issei Bhamgara, Hanoz Kaiwan Utsugi, Kei Hashizume, Jiro Ito, Kiyoto Hitachi Ltd Ctr Technol Innovat Res & Dev Grp Kokubunji Tokyo 1858601 Japan
This paper presents a fast optimization method for the picking order sequence of automated order picking systems in logistics warehouses. In this order sequencing problem (OSP), the fulfillment sequence of the given p... 详细信息
来源: 评论
Auto-Tuned Motion Scaling in Teleoperation Based on Human Reaction model Identification
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第1期7卷 318-325页
作者: Hsia, Shao-Kang Chuang, Yi-Hang Chen, Cheng-Wei Natl Taiwan Univ Dept Elect Engn Taipei 10617 Taiwan
Motion scaling is an essential technique in robotic surgical systems adopting the leader-follower configuration. By properly reducing the scaling factor, the surgeon can magnify the motion resolution that a human cann... 详细信息
来源: 评论
Trajectory Optimization and model Predictive control for Functional Electrical Stimulation-controlled Reaching
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第2期7卷 3093-3098页
作者: Wolf, Derek N. Schearer, Eric M. Vanderbilt Univ Dept Mech Engn Nashville TN 37206 USA Cleveland State Univ Ctr Human Machine Syst Cleveland Funct Elect Stimulat Ctr Cleveland OH 44115 USA Metrohlth Med Ctr Dept Phys Med & Rehabil Cleveland OH 44115 USA
Functional electrical stimulation (FES) offers promise as a technology to restore reaching motions to individuals with spinal cord injuries. To date, the level of reaching necessary for everyday use has not been achie... 详细信息
来源: 评论
control of Rough Terrain Vehicles Using Deep Reinforcement learning
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第1期7卷 390-397页
作者: Wiberg, Viktor Wallin, Erik Nordfjell, Tomas Servin, Martin Umea Univ Dept Phys S-90338 Umea Sweden Swedish Univ Agr Sci S-75007 Uppsala Sweden
We explore the potential to control terrain vehicles using deep reinforcement in scenarios where human operators and traditional control methods are inadequate. This letter presents a controller that perceives, plans,... 详细信息
来源: 评论
learning-Based Approach for a Soft Assistive Robotic Arm to Achieve Simultaneous Position and Force control
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第3期7卷 8315-8322页
作者: Tang, Zhiqiang Wang, Peiyi Xin, Wenci Laschi, Cecilia Natl Univ Singapore Dept Mech Engn Singapore 117575 Singapore Beijing Jiaotong Univ Robot Res Ctr Beijing 100044 Peoples R China
Soft robotics have demonstrated great advantages in assisting elderly/disabled people during daily tasks, owing to their highly dexterous motions and safe human-robot interactions. However, simultaneously controlling ... 详细信息
来源: 评论
On-Line learning for Planning and control of Underactuated Robots With Uncertain Dynamics
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2022年 第1期7卷 358-365页
作者: Turrisi, Giulio Capotondi, Marco Gaz, Claudio Modugno, Valerio Oriolo, Giuseppe De Luca, Alessandro Sapienza Univ Roma Dipartimento Ingn Informat Automat & Gest I-00185 Rome Italy
We present an iterative approach for planning and controlling motions of underactuated robots with uncertain dynamics. At its core, there is a learning process which estimates the perturbations induced by the model un... 详细信息
来源: 评论
Sample Efficient Dynamics learning for Symmetrical Legged Robots: Leveraging Physics Invariance and Geometric Symmetries
Sample Efficient Dynamics Learning for Symmetrical Legged Ro...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Lee, Jee-eun Lee, Jaemin Bandyopadhyay, Tirthankar Sentis, Luis Univ Texas Austin Dept Aerosp Engn & Engn Mech Human Ctr Robot Lab Austin TX 78712 USA CALTECH Dept Mech & Civil Engn Pasadena CA 91125 USA Univ Texas Austin Fac Dept Aerosp Engn & Engn Mech Austin TX USA CSIRO Robot & Autonomous Syst Grp Data61 Pullenvale Qld 4069 Australia
model generalization of the underlying dynamics is critical for achieving data efficiency when learning for robot control. This paper proposes a novel approach for learning dynamics leveraging the symmetry in the unde... 详细信息
来源: 评论
Neural Predictor for Flight control With Payload
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2025年 第7期10卷 7055-7062页
作者: Jin, Ao Li, Chenhao Wang, Qinyi Liu, Ya Huang, Panfeng Zhang, Fan Northwestern Polytech Univ Res Ctr Intelligent Robot Sch Astronaut Shaanxi Prov Innovat Team Intelligent Robot Techno Xian 710072 Peoples R China
Aerial robotics for transporting suspended payloads as the form of freely-floating manipulator are growinggreat interest in recent years. However, the force/torque caused by payload and residual dynamics will introduc... 详细信息
来源: 评论
learning Deep Nets for Gravitational Dynamics With Unknown Disturbance Through Physical Knowledge Distillation: Initial Feasibility Study
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2021年 第2期6卷 2658-2665页
作者: Lin, Hongbin Gao, Qian Chu, Xiangyu Dou, Qi Deguet, Anton Kazanzides, Peter Au, K. W. Samuel Chinese Univ Hong Kong Dept Mech & Automat Engn Hong Kong Peoples R China Chinese Univ Hong Kong Sch Sci & Engn Shenzhen Inst Artificial Intelligence & Robot Soc Shenzhen Peoples R China Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China Johns Hopkins Univ Dept Comp Sci Baltimore MD 21218 USA
learning high-performance deep neural networks for dynamic modeling of high Degree-Of-Freedom (DOF) robots remains challenging due to the sampling complexity. Typical unknown system disturbance caused by unmodeled dyn... 详细信息
来源: 评论