咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6 篇 工学
    • 5 篇 计算机科学与技术...
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 测绘科学与技术
    • 1 篇 化学工程与技术
    • 1 篇 环境科学与工程(可...
  • 1 篇 理学
    • 1 篇 地球物理学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 6 篇 model paralleliz...
  • 2 篇 deep learning
  • 1 篇 seismic wave sim...
  • 1 篇 performance
  • 1 篇 runtime
  • 1 篇 parallel process...
  • 1 篇 multi-modal obse...
  • 1 篇 dynamic load bal...
  • 1 篇 message passing
  • 1 篇 neural network t...
  • 1 篇 cfd
  • 1 篇 deep neural netw...
  • 1 篇 load balancing
  • 1 篇 computer archite...
  • 1 篇 earthquake engin...
  • 1 篇 boundary conditi...
  • 1 篇 neural networks
  • 1 篇 land cover class...
  • 1 篇 load modeling
  • 1 篇 resource managem...

机构

  • 1 篇 manchester metro...
  • 1 篇 fraunhofer first...
  • 1 篇 univ crete comp ...
  • 1 篇 univ sheffield d...
  • 1 篇 norwegian univ s...
  • 1 篇 univ illinois na...
  • 1 篇 harvard univ cam...
  • 1 篇 fdn res & techno...
  • 1 篇 lig grenoble
  • 1 篇 nanjing univ aer...
  • 1 篇 kth royal inst t...
  • 1 篇 univ fed rio gra...
  • 1 篇 norwegian univ s...
  • 1 篇 norwegian univ s...
  • 1 篇 bur rech geol & ...

作者

  • 1 篇 tsakalides panag...
  • 1 篇 lindborg h
  • 1 篇 vlassov vladimir
  • 1 篇 navaux philippe ...
  • 1 篇 mendes celso
  • 1 篇 eide v
  • 1 篇 pilla laercio li...
  • 1 篇 hagos desta hail...
  • 1 篇 payberah amir h.
  • 1 篇 mehaut jean-fran...
  • 1 篇 henriksen st
  • 1 篇 jakobsen ha
  • 1 篇 zhang xin
  • 1 篇 akintoye samson ...
  • 1 篇 tesser rafael ke...
  • 1 篇 wang tianze
  • 1 篇 band neil
  • 1 篇 dupros fabrice
  • 1 篇 han liangxiu
  • 1 篇 chen haoming

语言

  • 5 篇 英文
  • 1 篇 其他
检索条件"主题词=Model Parallelization"
6 条 记 录,以下是1-10 订阅
排序:
parallelization and performance optimization of a dynamic PDE fixed bed reactor model for practical applications
收藏 引用
COMPUTERS & CHEMICAL ENGINEERING 2004年 第9期28卷 1585-1597页
作者: Lindborg, H Eide, V Unger, S Henriksen, ST Jakobsen, HA Norwegian Univ Sci & Technol Dept Chem Engn NO-7491 Trondheim Norway Norwegian Univ Sci & Technol NTNU High Performance Comp Grp IT Div NO-7491 Trondheim Norway Fraunhofer FIRST Fraunhofer Inst Comp Architect & Software Technol Berlin Germany Norwegian Univ Sci & Technol Dept Math Sci NO-7491 Trondheim Norway
An important inherent limitation of dynamic multiphase reactor flow simulations is the computational time requirements, making long time statistics intractable. A parallel CFD model has therefore been developed intend... 详细信息
来源: 评论
A Hybrid parallelization Approach for Distributed and Scalable Deep Learning
收藏 引用
IEEE ACCESS 2022年 10卷 77950-77961页
作者: Akintoye, Samson B. Han, Liangxiu Zhang, Xin Chen, Haoming Zhang, Daoqiang Manchester Metropolitan Univ Dept Comp & Math Manchester M15 6BH Lancs England Univ Sheffield Dept Comp Sci Sheffield S10 2TN S Yorkshire England Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing 210016 Peoples R China
Recently, Deep Neural Networks (DNNs) have recorded significant success in handling medical and other complex classification tasks. However, as the sizes of DNN models and the available datasets increase, the training... 详细信息
来源: 评论
Accelerate model Parallel Deep Learning Training Using Effective Graph Traversal Order in Device Placement  22nd
Accelerate Model Parallel Deep Learning Training Using Effec...
收藏 引用
22nd IFIP WG 6.1 International Conference on Distributed Applications and Interoperable Systems (DAIS) Held as Part of the 17th International Federated Conference on Distributed Computing Techniques (DisCoTec)
作者: Wang, Tianze Payberah, Amir H. Hagos, Desta Haileselassie Vlassov, Vladimir KTH Royal Inst Technol Stockholm Sweden
Modern neural networks require long training to reach decent performance on massive datasets. One common approach to speed up training is model parallelization, where large neural networks are split across multiple de... 详细信息
来源: 评论
Improving the performance of seismic wave simulations with dynamic load balancing
Improving the performance of seismic wave simulations with d...
收藏 引用
22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)
作者: Tesser, Rafael Keller Pilla, Laercio Lima Dupros, Fabrice Navaux, Philippe O. A. Mehaut, Jean-Francois Mendes, Celso Univ Fed Rio Grande do Sul Inst Informat BR-90046900 Porto Alegre RS Brazil Bur Rech Geol & Minieres F-45060 Orleans 2 France LIG Grenoble France Univ Illinois Natl Ctr Supercomp Applicat Urbana IL 61801 USA
Seismic wave models provide a way to study the consequences of future earthquakes. When modeling a restricted region, these models require a boundary condition to absorb the energy that goes out of the simulated domai... 详细信息
来源: 评论
MemFlow: Memory-Aware Distributed Deep Learning  20
MemFlow: Memory-Aware Distributed Deep Learning
收藏 引用
ACM SIGMOD International Conference on Management of Data (SIGMOD)
作者: Band, Neil Harvard Univ Cambridge MA 02138 USA
As the number of layers and the amount of training data increases, the trend is to train deep neural networks in parallel across devices. In such scenarios, neural network training is increasingly bottlenecked by high... 详细信息
来源: 评论
Distributed Training and Inference of Deep Learning models for Multi-Modal Land Cover Classification
收藏 引用
REMOTE SENSING 2020年 第17期12卷 2670-2670页
作者: Aspri, Maria Tsagkatakis, Grigorios Tsakalides, Panagiotis Fdn Res & Technol Hellas FORTH Inst Comp Sci GR-70013 Iraklion Greece Univ Crete Comp Sci Dept GR-70013 Iraklion Greece
Deep Neural Networks (DNNs) have established themselves as a fundamental tool in numerous computational modeling applications, overcoming the challenge of defining use-case-specific feature extraction processing by in... 详细信息
来源: 评论