咨询与建议

限定检索结果

文献类型

  • 174 篇 期刊文献
  • 75 篇 会议
  • 3 篇 学位论文
  • 1 册 图书

馆藏范围

  • 253 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 201 篇 工学
    • 134 篇 计算机科学与技术...
    • 62 篇 电气工程
    • 22 篇 软件工程
    • 18 篇 信息与通信工程
    • 14 篇 控制科学与工程
    • 12 篇 水利工程
    • 11 篇 环境科学与工程(可...
    • 8 篇 土木工程
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 测绘科学与技术
    • 5 篇 生物医学工程(可授...
    • 4 篇 机械工程
    • 4 篇 动力工程及工程热...
    • 4 篇 电子科学与技术(可...
    • 4 篇 食品科学与工程(可...
    • 4 篇 安全科学与工程
  • 75 篇 理学
    • 29 篇 统计学(可授理学、...
    • 25 篇 数学
    • 14 篇 地球物理学
    • 13 篇 物理学
    • 13 篇 生物学
    • 6 篇 化学
  • 32 篇 医学
    • 20 篇 临床医学
    • 7 篇 基础医学(可授医学...
  • 18 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 6 篇 公共管理
    • 5 篇 图书情报与档案管...
  • 12 篇 农学
  • 10 篇 经济学
    • 9 篇 应用经济学
  • 5 篇 法学
    • 4 篇 社会学
  • 3 篇 教育学
  • 2 篇 哲学
  • 1 篇 文学

主题

  • 253 篇 model robustness
  • 22 篇 deep learning
  • 13 篇 data augmentatio...
  • 13 篇 adversarial trai...
  • 12 篇 robustness
  • 11 篇 adversarial exam...
  • 10 篇 adversarial atta...
  • 10 篇 training
  • 9 篇 adversarial defe...
  • 9 篇 machine learning
  • 8 篇 adversarial atta...
  • 7 篇 data models
  • 6 篇 neural networks
  • 6 篇 adaptation model...
  • 5 篇 sensitivity anal...
  • 5 篇 model selection
  • 5 篇 adversarial exam...
  • 5 篇 contrastive lear...
  • 5 篇 computational mo...
  • 5 篇 feature extracti...

机构

  • 4 篇 univ elect sci &...
  • 3 篇 zhejiang univ pe...
  • 3 篇 tianjin univ col...
  • 3 篇 beihang univ sta...
  • 3 篇 stanford univ st...
  • 3 篇 texas a&m univ d...
  • 3 篇 zhejiang univ co...
  • 3 篇 michigan state u...
  • 3 篇 univ elect sci &...
  • 2 篇 univ chicago dep...
  • 2 篇 wuhan text univ ...
  • 2 篇 zhongguancun lab...
  • 2 篇 univ texas arlin...
  • 2 篇 fermilab natl ac...
  • 2 篇 deepreader gmbh ...
  • 2 篇 univ chinese aca...
  • 2 篇 duquesne univ gr...
  • 2 篇 sun yat sen univ...
  • 2 篇 duquesne univ du...
  • 2 篇 chinese acad sci...

作者

  • 6 篇 yang jie
  • 5 篇 liu xianglong
  • 4 篇 yang hao
  • 4 篇 wang min
  • 4 篇 guo yi
  • 4 篇 hu xinrong
  • 4 篇 zhou yun
  • 4 篇 liu aishan
  • 3 篇 shen heng tao
  • 3 篇 xu xing
  • 3 篇 lu jiangang
  • 3 篇 wang wentao
  • 3 篇 yang yang
  • 3 篇 chen junjie
  • 3 篇 liu junping
  • 2 篇 hansen wg
  • 2 篇 wiens douglas p.
  • 2 篇 zhang yingyi
  • 2 篇 yao xin
  • 2 篇 wang jiakai

语言

  • 235 篇 英文
  • 17 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 中文
检索条件"主题词=Model Robustness"
253 条 记 录,以下是1-10 订阅
排序:
Analyze and Improve Differentially Private Federated Learning: A model robustness Perspective
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2025年 20卷 807-821页
作者: Zhang, Shuaishuai Huang, Jie Li, Peihao Southeast Univ Sch Cyber Sci & Engn Nanjing 211189 Peoples R China Purple Mt Labs Nanjing 211111 Peoples R China
Differentially Private Federated learning (DPFL) applies differential privacy (DP) techniques to preserve clients' privacy in Federated Learning (FL). Existing methods based on Gaussian Mechanism require the opera... 详细信息
来源: 评论
Adversarial Vulnerabilities in Ransomware Detection: Enhancing Machine Learning model robustness  22
Adversarial Vulnerabilities in Ransomware Detection: Enhanci...
收藏 引用
22nd IEEE Consumer Communications and Networking Conference, CCNC 2025
作者: Heydari, Vahid Nyarko, Kofi Morgan State University Computer Science Department Baltimore United States Morgan State University Electrical and Computer Engineering Department Baltimore United States
Machine learning (ML) models are increasingly employed in cybersecurity to detect and prevent malicious activities such as ransomware attacks. However, these models are vulnerable to adversarial attacks, where subtle ... 详细信息
来源: 评论
model robustness improvement by absorption and reduced scattering spectra in short wave near infrared spectral region
收藏 引用
BIOSYSTEMS ENGINEERING 2018年 176卷 114-124页
作者: He, Xueming Fu, Xiaping Rao, Xiuqin Zhejiang Univ Coll Biosyst Engn & Food Sci 866 Yuhangtang Rd Hangzhou 310058 Zhejiang Peoples R China Zhejiang Sci Tech Univ Fac Mech Engn & Automat 928 Second Ave Hangzhou 310018 Zhejiang Peoples R China Minist Agr Key Lab Site Proc Equipment Agr Prod Beijing Peoples R China
model robustness has always been the research focus for near infrared spectroscopy technique. In this study, we compared the model performance of four different kinds of spectra (transmittance, reflectance, absorption... 详细信息
来源: 评论
model robustness in economics: the admissibility and evaluation of tractability assumptions
收藏 引用
SYNTHESE 2022年 第1期200卷 32页
作者: O'Loughlin, Ryan Li, Dan Indiana Univ Dept Hist & Philosophy Sci & Med Bloomington IN 47405 USA Indiana Univ Dept Informat Bloomington IN 47405 USA
Lisciandra (2017) poses a challenge for robustness analysis (RA) as applied to economic models. She argues that substituting tractability assumptions risks altering the main mathematical structure of the model, thereb... 详细信息
来源: 评论
model robustness of finite state nonlinear filtering over the infinite time horizon
收藏 引用
ANNALS OF APPLIED PROBABILITY 2007年 第2期17卷 688-715页
作者: Chigansky, Pavel van Handel, Ramon Weizmann Inst Sci Dept Math IL-76100 Rehovot Israel CALTECH Phys Measurement & Control 26633 Pasadena CA 91125 USA
We investigate the robustness of nonlinear filtering for continuous time finite state Markov chains, observed in white noise, with respect to misspecification of the model parameters. It is shown that the distance bet... 详细信息
来源: 评论
Re-thinking model robustness from stability: a new insight to defend adversarial examples
收藏 引用
MACHINE LEARNING 2022年 第7期111卷 2489-2513页
作者: Zhang, Shufei Huang, Kaizhu Xu, Zenglin Univ Liverpool Dept Comp Sci Liverpool L69 3BX Merseyside England Xian Jiaotong Liverpool Univ Dept Intelligent Sci Suzhou 215123 Peoples R China Shanghai Artificial Intelligence Lab 37th FloorAI Tower701 Yunjin Rd Shanghai Peoples R China Duke Kunshan Univ Data Sci Res Ctr Duke Ave 8 Suzhou 215316 Peoples R China Harbin Inst Technol Dept Comp Sci & Technol Shenzhen 518055 Guangdong Peoples R China
We study the model robustness against adversarial examples, referred to as small perturbed input data that may however fool many state-of-the-art deep learning models. Unlike previous research, we establish a novel th... 详细信息
来源: 评论
Calibration of empirical models considering model fidelity and model robustness - Focusing on predictions of liquefaction-induced settlements
收藏 引用
ENGINEERING GEOLOGY 2016年 203卷 168-177页
作者: Gong, Wenping Tien, Yong Ming Hsein-Juang, C. Martin, James R., II Zhang, Jie Clemson Univ Glenn Dept Civil Engn Clemson SC 29634 USA Natl Cent Univ Dept Civil Engn Taoyuan 320 Taiwan Tongji Univ Dept Geotech Engn Shanghai 200092 Peoples R China
Most data-driven empirical models adopted in the geotechnical design have various degrees of uncertainty. Consequently, it is important to properly calibrate this uncertainty prior to its application in the geotechnic... 详细信息
来源: 评论
Enhancing model robustness and Accuracy Against Adversarial Attacks via Adversarial Input Training
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2024年 第3期15卷 1210-1228页
作者: Ingle, Ganesh Pawale, Sanjesh Vishwakarma Univ Dept Comp Engn Pune Maharashtra India
Adversarial attacks present a formidable challenge to the integrity of Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) models, particularly in the domain of power quality disturbance (PQD) classificatio... 详细信息
来源: 评论
Improving model robustness of traffic crash risk evaluation via adversarial mix-up under traffic flow fundamental diagram
收藏 引用
ACCIDENT ANALYSIS AND PREVENTION 2024年 194卷 107360页
作者: Yu, Rongjie Han, Lei Abdel-Aty, Mohamed Wang, Liqiang Zou, Zihang Minist Educ Key Lab Rd & Traff Engn 4800 Caoan Rd Shanghai 201804 Peoples R China Univ Cent Florida Dept Civil Environm & Construct Engn Orlando FL 32816 USA Univ Cent Florida Dept Comp Sci 32816HEC 437E Orlando FL 32816 USA
Recent state-of-art crash risk evaluation studies have exploited deep learning (DL) techniques to improve performance in identifying high-risk traffic operation statuses. However, it is doubtful if such DL-based model... 详细信息
来源: 评论
Improvement of empirical OPC model robustness using full-chip aerial image analysis
Improvement of empirical OPC model robustness using full-chi...
收藏 引用
23rd Annual BACUS Symposium on Photomask Technology
作者: Roessler, T Frankowsky, B Infineon Technol AG D-81609 Munich Germany
With advanced CMOS technologies, model-based optical proximity correction (OPC) has become the most important aspect of post-tape-out data preparation for critical mask levels. While fabrication processes certainly re... 详细信息
来源: 评论