咨询与建议

限定检索结果

文献类型

  • 21 篇 期刊文献

馆藏范围

  • 21 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 理学
    • 19 篇 大气科学
    • 1 篇 海洋科学
  • 2 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...
    • 1 篇 船舶与海洋工程

主题

  • 21 篇 model interpreta...
  • 8 篇 machine learning
  • 6 篇 data science
  • 5 篇 classification
  • 5 篇 ensembles
  • 4 篇 forecasting tech...
  • 4 篇 statistics
  • 4 篇 artificial intel...
  • 3 篇 deep learning
  • 3 篇 decision trees
  • 3 篇 uncertainty
  • 3 篇 forecasting
  • 3 篇 statistical fore...
  • 3 篇 forecast verific...
  • 2 篇 statistical tech...
  • 2 篇 algorithms
  • 2 篇 numerical weathe...
  • 2 篇 data mining
  • 2 篇 probability fore...
  • 2 篇 severe storms

机构

  • 3 篇 univ oklahoma sc...
  • 2 篇 univ oklahoma co...
  • 2 篇 univ oklahoma sc...
  • 2 篇 colorado state u...
  • 1 篇 guangdong climat...
  • 1 篇 north carolina s...
  • 1 篇 natl severe stor...
  • 1 篇 hohai univ key l...
  • 1 篇 univ hamburg reg...
  • 1 篇 norwegian meteor...
  • 1 篇 nyu courant inst...
  • 1 篇 vrije univ amste...
  • 1 篇 univ colorado co...
  • 1 篇 ludwigs maximili...
  • 1 篇 royal netherland...
  • 1 篇 mississippi stat...
  • 1 篇 colorado state u...
  • 1 篇 univ oklahoma sc...
  • 1 篇 cent south univ ...
  • 1 篇 univ oklahoma sc...

作者

  • 2 篇 mcgovern amy
  • 2 篇 lackmann gary m.
  • 2 篇 radford jacob t.
  • 1 篇 miltenberger ann...
  • 1 篇 scheffer marten
  • 1 篇 hu yamin
  • 1 篇 wood kimberly m.
  • 1 篇 hammerling dorit
  • 1 篇 wirth volkmar
  • 1 篇 loken eric d.
  • 1 篇 goodwin jean
  • 1 篇 mazurek alexandr...
  • 1 篇 nipen thomas n.
  • 1 篇 jatau precious
  • 1 篇 clark adam j.
  • 1 篇 van straaten chi...
  • 1 篇 liang peng
  • 1 篇 yan wenjie
  • 1 篇 lerch sebastian
  • 1 篇 redl robert

语言

  • 21 篇 英文
检索条件"主题词=Model interpretation and visualization"
21 条 记 录,以下是1-10 订阅
排序:
Accelerating Community-Wide Evaluation of AI models for Global Weather Prediction by Facilitating Access to model Output
收藏 引用
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 2025年 第1期106卷 E68-E76页
作者: Radford, Jacob T. Ebert-Uphoff, Imme Stewart, Jebb Q. Musgrave, Kate D. Demaria, Robert Tourville, Natalie Hilburn, Kyle Colorado State Univ Cooperat Inst Res Atmosphere Ft Collins CO 80523 USA NOAA Global Syst Lab Boulder CO 80305 USA Colorado State Univ Elect & Comp Engn Ft Collins CO USA
Numerous artificial intelligence-based weather prediction (AIWP) models have emerged over the past 2 years, mostly in the private sector. There is an urgent need to evaluate these models from a meteorological perspect... 详细信息
来源: 评论
Can Ingredients-Based Forecasting Be Learned? Disentangling a Random Forest's Severe Weather Predictions
收藏 引用
WEATHER AND FORECASTING 2025年 第2期40卷 237-258页
作者: Mazurek, Alexandra c. Hill, Aaron j. Schumacher, Russ s. Mcdaniel, Hanna j. Colorado State Univ Dept Atmospher Sci Ft Collins CO 80523 USA Florida State Univ Dept Earth Ocean & Atmospher Sci Tallahassee FL USA Univ Oklahoma Sch Meteorol Norman OK USA
Machine learning (ML)-based models have been rapidly integrated into forecast practices across the weather forecasting community in recent years. While ML tools introduce additional data to forecasting operations, the... 详细信息
来源: 评论
ProbSevere Version 3: Improved Exploitation of Data Fusion and Machine Learning for Nowcasting Severe Weather
收藏 引用
WEATHER AND FORECASTING 2024年 第12期39卷 1937-1958页
作者: Cintineo, John l. Pavolonis, Michael j. Sieglaff, Justin m. Univ Wisconsin Madison Cooperat Inst Meteorol Satellite Studies Madison WI 53705 USA NOAA NESDIS Ctr Satellite Applicat & Res Ctr Satellite Applicat & Res Madison WI USA
National Oceanic and Atmospheric Administration (NOAA)/Cooperative Institute for Meteorological Satellite Studies (CIMSS) ProbSevere, or the "probability of severe" models, provide next-hour probabilistic gu... 详细信息
来源: 评论
Deep Learning-Based Ensemble Forecast and Predictability Analysis of the Kuroshio Intrusion into the South China Sea
收藏 引用
JOURNAL OF PHYSICAL OCEANOGRAPHY 2024年 第7期54卷 1503-1517页
作者: Qian, Junkai Wang, Qiang Liang, Peng Peng, Suqi Wang, Huizan Wu, Yanling Hohai Univ Key Lab Marine Hazards Forecasting Minist Nat Resources Nanjing Peoples R China Hohai Univ Coll Oceanog Nanjing Peoples R China Guangdong Ocean Univ Coll Ocean & Meteorol Zhanjiang Peoples R China Natl Univ Def Technol Coll Meteorol & Oceanog Changsha Peoples R China
The Kuroshio intrusion (KI) into the South China Sea (SCS) significantly fi cantly affects the environment, ecology, and climate change of the SCS. However, due to the nonlinearity of KI, its numerical prediction ofte... 详细信息
来源: 评论
Exploring the Usefulness of Machine Learning Severe Weather Guidance in the Warn-on-Forecast System: Results from the 2022 NOAA Hazardous Weather Testbed Spring Forecasting Experiment
收藏 引用
WEATHER AND FORECASTING 2024年 第7期39卷 1023-1044页
作者: Flora, Montgomery L. Gallo, Burkely Potvin, Corey K. Cark, Adam J. Wilson, Katie Univ Oklahoma Cooperat Inst Severe & High Impact Weather Res & O Norman OK 73019 USA NOAA OAR Natl Severe Storms Lab Norman OK 73072 USA Storm Predict Ctr Norman OK USA Univ Oklahoma Sch Meteorol Norman OK USA US Air Force 557th Weather Wing Offutt Afb NE USA Rand Corp Santa Monica CA USA
Artificial intelligence (AI) is gaining popularity for severe weather forecasting. Recently, the authors developed an AI system using machine learning (ML) to produce probabilistic guidance for severe weather hazards,... 详细信息
来源: 评论
Interpretable Convolutional Neural Network for Analyzing Precipitation in the Pre-Rainy Season of South China
收藏 引用
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY 2024年 第3期63卷 387-399页
作者: Liu, Shengjun Yan, Wenjie Liu, Xinru Hu, Yamin Yanga, Dangfu Cent South Univ Sch Math & Stat Changsha Peoples R China Guangdong Climate Ctr Guangzhou Peoples R China
The research and application of convolutional neural networks (CNNs) on statistical downscaling have been hampered by the fact that deep learning is highly dependent on sample size and is considered to be a black-box ... 详细信息
来源: 评论
Deep Low-Shot Learning for Biological Image Classification and visualization From Limited Training Samples
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023年 第5期34卷 2528-2538页
作者: Cai, Lei Wang, Zhengyang Kulathinal, Rob Kumar, Sudhir Ji, Shuiwang Washington State Univ Sch Elect Engn & Comp Sci Pullman WA 99164 USA Texas A&M Univ Dept Comp Sci & Engn College Stn TX 77843 USA Temple Univ Dept Biol Philadelphia PA 19122 USA
Predictive modeling is useful but very challenging in biological image analysis due to the high cost of obtaining and labeling training data. For example, in the study of gene interaction and regulation in Drosophila ... 详细信息
来源: 评论
A Machine Learning Tutorial for Operational Meteorology. Part I: Traditional Machine Learning
收藏 引用
WEATHER AND FORECASTING 2022年 第8期37卷 1509-1529页
作者: Chase, Randy J. Harrison, David R. Burke, Amanda Lackmann, Gary M. McGovern, Amy Univ Oklahoma Sch Comp Sci Norman OK 73019 USA Univ Oklahoma Sch Meteorol Norman OK 73019 USA Univ Oklahoma NSF AI Inst Res Trustworthy AI Weather Climate & Norman OK 73019 USA Univ Oklahoma Cooperat Inst Severe & High Impact Weather Res & Norman OK 73019 USA NOAA NWS Storm Predict Ctr Norman OK USA North Carolina State Univ Dept Marine Earth & Atmospher Sci Raleigh NC USA
Recently, the use of machine learning in meteorology has increased greatly. While many machine learning methods are not new, university classes on machine learning are largely unavailable to meteorology students and a... 详细信息
来源: 评论
Using Explainable Machine Learning Forecasts to Discover Subseasonal Drivers of High Summer Temperatures in Western and Central Europe
收藏 引用
MONTHLY WEATHER REVIEW 2022年 第5期150卷 1115-1134页
作者: Van Straaten, Chiem Whan, Kirien Coumou, Dim Van den Hurk, Bart Schmeits, Maurice Royal Netherlands Meteorol Inst KNMI De Bilt Netherlands Vrije Univ Amsterdam Inst Environm Studies IVM Amsterdam Netherlands Potsdam Inst Climate Impact Res Potsdam Germany Deltares Delft Netherlands
Reliable subseasonal forecasts of high summer temperatures would be very valuable for society. Although state-of-the-art numerical weather prediction (NWP) models have become much better in representing the relevant s... 详细信息
来源: 评论
Comparing and Interpreting Differently Designed Random Forests for Next-Day Severe Weather Hazard Prediction
收藏 引用
WEATHER AND FORECASTING 2022年 第6期37卷 871-899页
作者: Loken, Eric D. Clark, Adam J. McGovern, Amy Univ Oklahoma Cooperat Inst Mesoscale Meteorol Studies Norman OK 73019 USA Natl Severe Storms Lab NOAA OAR Norman OK 73072 USA Univ Oklahoma Sch Meteorol Norman OK 73019 USA
Recent research has shown that random forests (RFs) can create skillful probabilistic severe weather hazard forecasts from numerical weather prediction (NWP) ensemble data. However, it remains unclear how RFs use NWP ... 详细信息
来源: 评论