咨询与建议

限定检索结果

文献类型

  • 27 篇 期刊文献
  • 18 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 46 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 43 篇 工学
    • 25 篇 电气工程
    • 16 篇 计算机科学与技术...
    • 9 篇 信息与通信工程
    • 6 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
  • 18 篇 医学
    • 11 篇 特种医学
    • 8 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 8 篇 理学
    • 3 篇 物理学
    • 3 篇 地球物理学
    • 1 篇 数学
    • 1 篇 大气科学
    • 1 篇 生物学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 46 篇 model-based deep...
  • 6 篇 deep unfolding
  • 4 篇 deep learning
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 plug-and-play pr...
  • 3 篇 deep equilibrium...
  • 3 篇 monotone operato...
  • 3 篇 deep receivers
  • 2 篇 hyperspectral im...
  • 2 篇 dipole inversion
  • 2 篇 wireless communi...
  • 2 篇 neural networks
  • 2 篇 diffusion mri
  • 2 篇 low-resolution s...
  • 2 篇 one-bit quantiza...
  • 2 篇 wireless communi...
  • 2 篇 regularization b...
  • 2 篇 receivers
  • 2 篇 machine learning

机构

  • 3 篇 zhejiang univ de...
  • 3 篇 univ illinois de...
  • 2 篇 zhejiang univ co...
  • 2 篇 ben gurion univ ...
  • 2 篇 weizmann inst sc...
  • 2 篇 univ iowa dept e...
  • 2 篇 ben gurion univ ...
  • 2 篇 univ florida dep...
  • 2 篇 nanjing univ pos...
  • 2 篇 ben gurion univ ...
  • 2 篇 nanjing univ sci...
  • 1 篇 technion iit fac...
  • 1 篇 washington univ ...
  • 1 篇 alan turing inst...
  • 1 篇 chongqing univ s...
  • 1 篇 dongguk univ dep...
  • 1 篇 washington univ ...
  • 1 篇 texas a&m univ i...
  • 1 篇 jiaxing key lab ...
  • 1 篇 univ texas austi...

作者

  • 9 篇 shlezinger nir
  • 5 篇 hu rui
  • 5 篇 soltanalian mojt...
  • 5 篇 liu huafeng
  • 4 篇 khobahi shahin
  • 4 篇 eldar yonina c.
  • 4 篇 jacob mathews
  • 3 篇 cui jianan
  • 3 篇 xu xiaojian
  • 3 篇 raviv tomer
  • 3 篇 kamilov ulugbek ...
  • 2 篇 gan weijie
  • 2 篇 liu jiaming
  • 2 篇 qian yuntao
  • 2 篇 van sloun ruud j...
  • 2 篇 john maneesh
  • 2 篇 hu yuyang
  • 2 篇 yu chengjin
  • 2 篇 xiong fengchao
  • 2 篇 li chenxu

语言

  • 45 篇 英文
  • 1 篇 其他
检索条件"主题词=Model-Based Deep Learning"
46 条 记 录,以下是1-10 订阅
排序:
model-based deep learning for Distributed Maneuvering Target Tracking  17th
Model-Based Deep Learning for Distributed Maneuvering Target...
收藏 引用
17th International Conference on Intelligent Robotics and Applications
作者: Yang, Feng Gao, Tongyang Zheng, Litao Liao, Pan Northwestern Polytech Univ Sch Automat Xian Peoples R China Shanghai Jiao Tong Univ Dept Automat Shanghai Peoples R China
Traditional model-based distributed maneuvering target tracking methods often require prior knowledge of both sensor and target models, which can lead to significant degradation in tracking accuracy when faced with mo... 详细信息
来源: 评论
Efficient model-based deep learning via Network Pruning and Fine-Tuning
收藏 引用
JOURNAL OF MATHEMATICAL IMAGING AND VISION 2025年 第2期67卷 1-14页
作者: Park, Chicago Y. Gan, Weijie Zou, Zihao Hu, Yuyang Sun, Zhixin Kamilov, Ulugbek S. Washington Univ St Louis Dept Comp Sci & Engn 1 Brookings Dr St Louis MO 63130 USA Washington Univ St Louis Dept Elect & Syst Engn 1 Brookings Dr St Louis MO 63130 USA
model-based deep learning (MBDL) is a powerful methodology for designing deep models to solve imaging inverse problems. MBDL networks can be seen as iterative algorithms that estimate the desired image using a physica... 详细信息
来源: 评论
model-based deep learning Algorithm for Detection and Classification at High Event Rates
收藏 引用
IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2024年 第5期71卷 970-980页
作者: Morad, Itai Ghelman, Max Ginzburg, Dimitry Osovizky, Alon Shlezinger, Nir Ben Gurion Univ Negev Sch ECE IL-84105 Beer Sheva Israel Israel Atom Energy Commiss IL-61070 Tel Aviv Israel Nucl Res Ctr Elect & Control Labs IL-84190 Negev Israel Rotem Ind Ltd Hlth Phys Instrumentat Dept IL-85339 Lehavim Israel Nucl Res Ctr Elect & Control Labs Beer Sheva Israel
Pulse shape discrimination (PSD) is required for many radioactive particle monitoring applications. Classical PSD methods commonly struggle at high event rates in the presence of pile up, and are therefore utilized fo... 详细信息
来源: 评论
model-based deep learning for One-Bit Compressive Sensing
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2020年 68卷 5292-5307页
作者: Khobahi, Shahin Soltanalian, Mojtaba Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
In this work, we consider the problem of one-bit deep compressive sensing from both a system design and a signal recovery perspective. In particular, we develop hybrid model-based deep learning architectures based on ... 详细信息
来源: 评论
model-based deep learning for additive manufacturing: New frontiers and applications
收藏 引用
MANUFACTURING LETTERS 2021年 29卷 94-98页
作者: Ghungrad, Suyog Gould, Benjamin Soltanalian, Mojtaba Wolff, Sarah Jeannette Haghighi, Azadeh Univ Illinois Dept Mech & Ind Engn Chicago IL 60607 USA Argonne Natl Lab Appl Mat Div 9700 S Cass Ave Lemont IL 60439 USA Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA Texas A&M Univ Ind & Syst Engn College Stn TX 77843 USA
Artificial intelligence has created disruptive possibilities in additive manufacturing towards smarter design, process control, and quality assurance. Nonetheless, the scarcity of data in additive manufacturing signif... 详细信息
来源: 评论
model-based deep learning for Reconstruction of Joint k-q Under-sampled High Resolution Diffusion MRI  17
Model-Based Deep Learning for Reconstruction of Joint k-q Un...
收藏 引用
IEEE 17th International Symposium on Biomedical Imaging (ISBI)
作者: Mani, Merry P. Aggarwal, Hemant K. Ghosh, Sanjay Jacob, Mathews Univ Iowa Iowa City IA 52242 USA
We propose a model-based deep learning architecture for the reconstruction of highly accelerated diffusion magnetic resonance imaging (MRI) that enables high resolution imaging. The proposed reconstruction jointly rec... 详细信息
来源: 评论
model-based deep learning: KEY APPROACHES AND DESIGN GUIDELINES
MODEL-BASED DEEP LEARNING: KEY APPROACHES AND DESIGN GUIDELI...
收藏 引用
IEEE Data Science and learning Workshop (DSLW)
作者: Shlezinger, Nir Whang, Jay Eldar, Yonina C. Dimakis, Alexandros G. Ben Gurion Univ Negev Sch ECE Beer Sheva Israel Univ Texas Austin Dept CS Austin TX 78712 USA Weizmann Inst Sci Fac Math & CS Rehovot Israel Univ Texas Austin Dept ECE Austin TX 78712 USA
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques. Such model-based methods tend to be sensitive to inaccuracies and may lead to poor performance whe... 详细信息
来源: 评论
model-based deep learning for Computational Imaging
Model-Based Deep Learning for Computational Imaging
收藏 引用
作者: Xu, Xiaojian Washington University in St. Louis
学位级别:Ph.D., Doctor of Philosophy
This dissertation addresses model-based deep learning for computational imaging. The motivation of our work is driven by the increasing interests in the combination of imaging model, which provides data-consistency gu... 详细信息
来源: 评论
Fast Calculation of Probabilistic Power Flow: A model-based deep learning Approach
收藏 引用
IEEE TRANSACTIONS ON SMART GRID 2020年 第3期11卷 2235-2244页
作者: Yang, Yan Yang, Zhifang Yu, Juan Zhang, Baosen Zhang, Youqiang Yu, Hongxin Chongqing Univ Sch Elect Engn Chongqing 400044 Peoples R China Univ Washington Dept Elect & Comp Engn Seattle WA 98195 USA State Grid Chongqing Elect Power Co Elect Power Res Inst Power Grid Technol Ctr Chongqing 401123 Peoples R China
Probabilistic power flow (PPF) plays a critical role in power system analysis. However, the high computational burden makes it challenging for the practical implementation of PPF. This paper proposes a model-based dee... 详细信息
来源: 评论
SGD-Net: Efficient model-based deep learning With Theoretical Guarantees
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2021年 7卷 598-610页
作者: Liu, Jiaming Sun, Yu Gan, Weijie Xu, Xiaojian Wohlberg, Brendt Kamilov, Ulugbek S. Washington Univ Dept Elect & Syst Engn St Louis MO 63130 USA Washington Univ Dept Comp Sci & Engn St Louis MO 63130 USA Los Alamos Natl Lab Div Theoret Los Alamos NM 87545 USA
deep unfolding networks have recently gained popularity for solving imaging inverse problems. However, the computational and memory complexity of data-consistency layers within traditional deep unfolding networks scal... 详细信息
来源: 评论