咨询与建议

限定检索结果

文献类型

  • 27 篇 期刊文献
  • 18 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 46 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 43 篇 工学
    • 25 篇 电气工程
    • 16 篇 计算机科学与技术...
    • 9 篇 信息与通信工程
    • 6 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
  • 18 篇 医学
    • 11 篇 特种医学
    • 8 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 8 篇 理学
    • 3 篇 物理学
    • 3 篇 地球物理学
    • 1 篇 数学
    • 1 篇 大气科学
    • 1 篇 生物学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 46 篇 model-based deep...
  • 6 篇 deep unfolding
  • 4 篇 deep learning
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 plug-and-play pr...
  • 3 篇 deep equilibrium...
  • 3 篇 monotone operato...
  • 3 篇 deep receivers
  • 2 篇 hyperspectral im...
  • 2 篇 dipole inversion
  • 2 篇 wireless communi...
  • 2 篇 neural networks
  • 2 篇 diffusion mri
  • 2 篇 low-resolution s...
  • 2 篇 one-bit quantiza...
  • 2 篇 wireless communi...
  • 2 篇 regularization b...
  • 2 篇 receivers
  • 2 篇 machine learning

机构

  • 3 篇 zhejiang univ de...
  • 3 篇 univ illinois de...
  • 2 篇 zhejiang univ co...
  • 2 篇 ben gurion univ ...
  • 2 篇 weizmann inst sc...
  • 2 篇 univ iowa dept e...
  • 2 篇 ben gurion univ ...
  • 2 篇 univ florida dep...
  • 2 篇 nanjing univ pos...
  • 2 篇 ben gurion univ ...
  • 2 篇 nanjing univ sci...
  • 1 篇 technion iit fac...
  • 1 篇 washington univ ...
  • 1 篇 alan turing inst...
  • 1 篇 chongqing univ s...
  • 1 篇 dongguk univ dep...
  • 1 篇 washington univ ...
  • 1 篇 texas a&m univ i...
  • 1 篇 jiaxing key lab ...
  • 1 篇 univ texas austi...

作者

  • 9 篇 shlezinger nir
  • 5 篇 hu rui
  • 5 篇 soltanalian mojt...
  • 5 篇 liu huafeng
  • 4 篇 khobahi shahin
  • 4 篇 eldar yonina c.
  • 4 篇 jacob mathews
  • 3 篇 cui jianan
  • 3 篇 xu xiaojian
  • 3 篇 raviv tomer
  • 3 篇 kamilov ulugbek ...
  • 2 篇 gan weijie
  • 2 篇 liu jiaming
  • 2 篇 qian yuntao
  • 2 篇 van sloun ruud j...
  • 2 篇 john maneesh
  • 2 篇 hu yuyang
  • 2 篇 yu chengjin
  • 2 篇 xiong fengchao
  • 2 篇 li chenxu

语言

  • 45 篇 英文
  • 1 篇 其他
检索条件"主题词=Model-Based Deep Learning"
46 条 记 录,以下是11-20 订阅
排序:
Split-KalmanNet: A Robust model-based deep learning Approach for State Estimation
收藏 引用
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2023年 第9期72卷 12326-12331页
作者: Choi, Geon Park, Jeonghun Shlezinger, Nir Eldar, Yonina C. Lee, Namyoon POSTECH Dept Elect Engn Pohang 37673 South Korea Yonsei Univ Sch Elect & Elect Engn Seoul 03722 South Korea Ben Gurion Univ Negev Sch Elect & Comp Engn IL-84105 Beer Sheva Israel Weizmann Inst Sci Math & CS Fac IL-7610001 Rehovot Israel Korea Univ Sch Elect Engn Seoul 02841 South Korea
Estimation of the state of a discrete-time state-space model from noisy measurements is a crucial aspect of signal processing. The extended Kalman filter (EKF) is widely used as a low-complexity solution based on a st... 详细信息
来源: 评论
Memory-Efficient model-based deep learning With Convergence and Robustness Guarantees
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2023年 9卷 260-275页
作者: Pramanik, Aniket Zimmerman, M. Bridget Jacob, Mathews Univ Iowa Dept Elect & Comp Engn Iowa City IA 52242 USA Univ Iowa Dept Biostat Iowa City IA 52242 USA
Computational imaging has been revolutionized by compressed sensing algorithms, which offer guaranteed uniqueness, convergence, and stability properties. model-based deep learning methods that combine imaging physics ... 详细信息
来源: 评论
Spinet-QSM: model-based deep learning with schatten p-norm regularization for improved quantitative susceptibility mapping
收藏 引用
MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2024年 第3期37卷 411-427页
作者: Venkatesh, Vaddadi Mathew, Raji Susan Yalavarthy, Phaneendra K. Indian Inst Sci Dept Computat & Data Sci Bangalore 560012 Karnataka India Indian Inst Sci Educ & Res Sch Data Sci Thiruvananthapuram 695551 Kerala India
Objective Quantitative susceptibility mapping (QSM) provides an estimate of the magnetic susceptibility of tissue using magnetic resonance (MR) phase measurements. The tissue magnetic susceptibility (source) from the ... 详细信息
来源: 评论
Near-Field Channel Estimation for Extremely Large-Scale Array Communications: A model-based deep learning Approach
收藏 引用
IEEE COMMUNICATIONS LETTERS 2023年 第4期27卷 1155-1159页
作者: Zhang, Xiangyu Wang, Zening Zhang, Haiyang Yang, Luxi Southeast Univ Sch Informat Sci & Engn Nanjing 211189 Peoples R China Southeast Univ Natl Mobile Commun Res Lab Nanjing 211189 Peoples R China Purple Mt Labs Pervas Commun Ctr Nanjing 210023 Peoples R China AsiaInfo Technol Ltd Beijing 100193 Peoples R China Nanjing Univ Posts & Telecommun Sch Commun & Informat Engn Nanjing 210049 Peoples R China
Extremely large-scale massive MIMO (XL-MIMO) has been reviewed as a promising technology for future wireless communications. The deployment of XL-MIMO, especially at high-frequency bands, leads to users being located ... 详细信息
来源: 评论
LMPDNET: TOF-PET LIST-MODE IMAGE RECONSTRUCTION USING model-based deep learning METHOD  30
LMPDNET: TOF-PET LIST-MODE IMAGE RECONSTRUCTION USING MODEL-...
收藏 引用
30th IEEE International Conference on Image Processing (ICIP)
作者: Li, Chenxu Fang, Jingwan Hu, Rui Cui, Jianan Liu, Huafeng Zhejiang Univ State Key Lab Modern Opt Instrumentat Hangzhou 310027 Peoples R China
The integration of Time-of-Flight (TOF) information in the reconstruction process of Positron Emission Tomography (PET) improves image qualities. However, implementing the cutting-edge model-based deep learning method... 详细信息
来源: 评论
Heart Segmentation on PA Chest X-ray Images by model-based deep learning Approach
Heart Segmentation on PA Chest X-ray Images by Model-Based D...
收藏 引用
IEEE International Symposium on Medical Measurements and Applications (MeMeA)
作者: Tumay, Adam Hadhazi, Daniel Hullam, Gabor Gamax Lab Solut Budapest Hungary Budapest Univ Technol & Econ Dept Measurement & Informat Syst Budapest Hungary
Nowadays, Cardivascular Diseases (CVDs) are the most common cause of deaths worldwide. Some lesions connected to CVDs (such as Cardiomegaly, pleural effusion, pulmonary edema) can be detected on acquired Posterior Ant... 详细信息
来源: 评论
learning From Noisy Data: An Unsupervised Random Denoising Method for Seismic Data Using model-based deep learning
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2022年 60卷 1页
作者: Wang, Feng Yang, Bo Wang, Yuqing Wang, Ming Zhejiang Univ Sch Earth Sci Key Lab Geosci Big Data & Deep Resource Zhejiang Hangzhou 310027 Peoples R China Tsinghua Univ Inst Artificial Intelligence THUAI Beijing Natl Res Ctr Informat Sci & Technol BNRis State Key Lab Intelligent Technol & Syst Beijing 100084 Peoples R China Tsinghua Univ Dept Automat Beijing 100084 Peoples R China Poyang Cty Bur Water Resources Off Water Survey & Design Poyang 333100 Peoples R China
For seismic random noise attenuation, deep learning has attracted much attention and achieved promising performance. However, compared with conventional methods, the denoising performance of supervised learning-based ... 详细信息
来源: 评论
MoDL-QSM: model-based deep learning for quantitative susceptibility mapping
收藏 引用
NEUROIMAGE 2021年 240卷 118376-118376页
作者: Feng, Ruimin Zhao, Jiayi Wang, He Yang, Baofeng Feng, Jie Shi, Yuting Zhang, Ming Liu, Chunlei Zhang, Yuyao Zhuang, Jie Wei, Hongjiang Shanghai Jiao Tong Univ Sch Biomed Engn Shanghai Peoples R China Shanghai Univ Sport Sch Psychol Shanghai Peoples R China Fudan Univ Inst Sci & Technol Brain Inspired Intelligence Shanghai Peoples R China Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94720 USA Univ Calif Berkeley Helen Wills Neurosci Inst Berkeley CA 94720 USA ShanghaiTech Univ Sch Informat & Sci & Technol Shanghai Peoples R China Shanghai Jiao Tong Univ Inst Med Robot Shanghai Peoples R China
Quantitative susceptibility mapping (QSM) has demonstrated great potential in quantifying tissue susceptibility in various brain diseases. However, the intrinsic ill-posed inverse problem relating the tissue phase to ... 详细信息
来源: 评论
deep Unfolding-based Weighted Averaging for Federated learning under Device and Statistical Heterogeneous Environments
收藏 引用
IEICE TRANSACTIONS ON COMMUNICATIONS 2025年 第4期E108B卷 411-420页
作者: Nakai-kasai, Ayano Wadayama, Tadashi Nagoya Inst Technol Grad Sch Engn Nagoya 4668555 Japan
Federated learning is a collaborative model training method that iterates model updates by multiple clients and aggregation of the updates by a central server. Device and statistical heterogeneity of participating cli... 详细信息
来源: 评论
Online Meta-learning for Hybrid model-based deep Receivers
收藏 引用
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 2023年 第10期22卷 6415-6431页
作者: Raviv, Tomer Park, Sangwoo Simeone, Osvaldo Eldar, Yonina C. Shlezinger, Nir Ben Gurion Univ Negev Sch ECE IL-8410501 Beer Sheva Israel Kings Coll London Dept Engn London WC2R 2LS England Weizmann Inst Sci Fac Math & CS IL-7610001 Rehovot Israel
Recent years have witnessed growing interest in the application of deep neural networks (DNNs) for receiver design, which can potentially be applied in complex environments without relying on knowledge of the channel ... 详细信息
来源: 评论