咨询与建议

限定检索结果

文献类型

  • 27 篇 期刊文献
  • 18 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 46 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 43 篇 工学
    • 25 篇 电气工程
    • 16 篇 计算机科学与技术...
    • 9 篇 信息与通信工程
    • 6 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
  • 18 篇 医学
    • 11 篇 特种医学
    • 8 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 8 篇 理学
    • 3 篇 物理学
    • 3 篇 地球物理学
    • 1 篇 数学
    • 1 篇 大气科学
    • 1 篇 生物学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 46 篇 model-based deep...
  • 6 篇 deep unfolding
  • 4 篇 deep learning
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 plug-and-play pr...
  • 3 篇 deep equilibrium...
  • 3 篇 monotone operato...
  • 3 篇 deep receivers
  • 2 篇 hyperspectral im...
  • 2 篇 dipole inversion
  • 2 篇 wireless communi...
  • 2 篇 neural networks
  • 2 篇 diffusion mri
  • 2 篇 low-resolution s...
  • 2 篇 one-bit quantiza...
  • 2 篇 wireless communi...
  • 2 篇 regularization b...
  • 2 篇 receivers
  • 2 篇 machine learning

机构

  • 3 篇 zhejiang univ de...
  • 3 篇 univ illinois de...
  • 2 篇 zhejiang univ co...
  • 2 篇 ben gurion univ ...
  • 2 篇 weizmann inst sc...
  • 2 篇 univ iowa dept e...
  • 2 篇 ben gurion univ ...
  • 2 篇 univ florida dep...
  • 2 篇 nanjing univ pos...
  • 2 篇 ben gurion univ ...
  • 2 篇 nanjing univ sci...
  • 1 篇 technion iit fac...
  • 1 篇 washington univ ...
  • 1 篇 alan turing inst...
  • 1 篇 chongqing univ s...
  • 1 篇 dongguk univ dep...
  • 1 篇 washington univ ...
  • 1 篇 texas a&m univ i...
  • 1 篇 jiaxing key lab ...
  • 1 篇 univ texas austi...

作者

  • 9 篇 shlezinger nir
  • 5 篇 hu rui
  • 5 篇 soltanalian mojt...
  • 5 篇 liu huafeng
  • 4 篇 khobahi shahin
  • 4 篇 eldar yonina c.
  • 4 篇 jacob mathews
  • 3 篇 cui jianan
  • 3 篇 xu xiaojian
  • 3 篇 raviv tomer
  • 3 篇 kamilov ulugbek ...
  • 2 篇 gan weijie
  • 2 篇 liu jiaming
  • 2 篇 qian yuntao
  • 2 篇 van sloun ruud j...
  • 2 篇 john maneesh
  • 2 篇 hu yuyang
  • 2 篇 yu chengjin
  • 2 篇 xiong fengchao
  • 2 篇 li chenxu

语言

  • 45 篇 英文
  • 1 篇 其他
检索条件"主题词=Model-Based Deep Learning"
46 条 记 录,以下是21-30 订阅
排序:
learning A model-based deep HYPERSPECTRAL DENOISER FROM A SINGLE NOISY HYPERSPECTRAL IMAGE
LEARNING A MODEL-BASED DEEP HYPERSPECTRAL DENOISER FROM A SI...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Fu, Guanyiman Xiong, Fengchao Tao, Shuyin Lu, Jianfeng Zhou, Jun Qian, Yuntao Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing Peoples R China Griffith Univ Sch Informat & Commun Technol Gold Coast Australia Zhejiang Univ Coll Comp Sci Hangzhou Peoples R China
Hyperspectral image (HSI) denoising is a crucial preprocessing procedure to improve the quality of HSI. model-based methods take the degradation model and the structure of underlying clean HSI into account for denoisi... 详细信息
来源: 评论
Modular Hypernetworks for Scalable and Adaptive deep MIMO Receivers
IEEE OPEN JOURNAL OF SIGNAL PROCESSING
收藏 引用
IEEE OPEN JOURNAL OF SIGNAL PROCESSING 2025年 6卷 256-265页
作者: Raviv, Tomer Shlezinger, Nir Ben Gurion Univ Negev Sch ECE IL-8410501 Negev Israel
deep neural networks (DNNs) were shown to facilitate the operation of uplink multiple-input multiple-output (MIMO) receivers, with emerging architectures augmenting modules of classic receiver processing. Current desi... 详细信息
来源: 评论
MBSS-T1: model-based subject-specific self-supervised motion correction for robust cardiac T1 mapping
收藏 引用
MEDICAL IMAGE ANALYSIS 2025年 102卷 103495页
作者: Hanania, Eyal Zehavi-Lenz, Adi Volovik, Ilya Link-Sourani, Daphna Cohen, Israel Freiman, Moti Technion IIT Fac Elect & Comp Engn Haifa Israel Technion IIT Fac Biomed Engn Haifa Israel Technion IIT Fac Biomed Engn May Blum Dahl MRI Res Ctr Haifa Israel Bnai Zion Med Ctr Haifa Israel
Cardiac T1 mapping is a valuable quantitative MRI technique for diagnosing diffuse myocardial diseases. Traditional methods, relying on breath-hold sequences and cardiac triggering based on an ECG signal, face challen... 详细信息
来源: 评论
Recovering high-quality fiber orientation distributions from a reduced number of diffusion-weighted images using a model-driven deep learning architecture
收藏 引用
MAGNETIC RESONANCE IN MEDICINE 2024年 第5期92卷 2193-2206页
作者: Bartlett, Joseph J. Davey, Catherine E. Johnston, Leigh A. Duan, Jinming Univ Melbourne Graeme Clark Inst Melbourne Brain Ctr Imaging Unit Dept Biomed Engn Parkville Vic Australia Univ Birmingham Sch Comp Sci Birmingham England Alan Turing Inst London England Univ Birmingham Sch Comp Sci Univ Rd West Birmingham B15 2TT England
PurposeThe aim of this study was to develop a model-based deep learning architecture to accurately reconstruct fiber orientation distributions (FODs) from a reduced number of diffusion-weighted images (DWIs), facilita... 详细信息
来源: 评论
Guaranteed deep learning for Reliable Radar Signal Processing  12
Guaranteed Deep Learning for Reliable Radar Signal Processin...
收藏 引用
IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM)
作者: Khobahi, Shahin Mostajeran, Ali Emadi, Mohammad Wang, Pu Soltanalian, Mojtaba Univ Illinois Chicago IL 60607 USA Zadar Labs Inc Santa Clara CA USA Mitsubishi Elect Res Labs Cambridge MA USA
Recently, there has been a significant level of attention paid to the application of deep learning in radar signal processing. Despite its flexibility, deep learning imposes new challenges in guaranteeing the performa... 详细信息
来源: 评论
Local Monotone Operator learning Using Non-Monotone Operators: MnM-MOL
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2024年 10卷 742-751页
作者: John, Maneesh Chand, Jyothi Rikhab Jacob, Mathews Univ Iowa Dept Elect & Comp Engn Iowa City IA 52242 USA
The recovery of magnetic resonance (MR) images from undersampled measurements is a key problem that has been the subject of extensive research in recent years. Unrolled approaches, which rely on end-to-end training of... 详细信息
来源: 评论
learning to Sample: Data-Driven Sampling and Reconstruction of FRI Signals
收藏 引用
IEEE ACCESS 2023年 11卷 71048-71062页
作者: Mulleti, Satish Zhang, Haiyang Eldar, Yonina C. C. Indian Inst Technol Dept Elect Engn Mumbai 400076 India Nanjing Univ Posts & Telecommun Sch Commun & Informat Engn Nanjing 210049 Peoples R China Weizmann Inst Sci Fac Math & Comp Sci IL-210049 Rehovot Israel
Finite-rate-of-innovation (FRI) signal model is well suited for time-of-flight imaging applications such as ultrasound, lidar, sonar, radar, and more. Due to their finite degrees of freedom, the sub-Nyquist sampling f... 详细信息
来源: 评论
Graph Convolutional Networks for model-based learning in Nonlinear Inverse Problems
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2021年 7卷 1341-1353页
作者: Herzberg, William Rowe, Daniel B. Hauptmann, Andreas Hamilton, Sarah J. Marquette Univ Dept Math & Stat Sci Milwaukee WI 53233 USA Univ Oulu Res Unit Math Sci Oulu 90570 Finland UCL Dept Comp Sci London WC1E 6BT England
The majority of model-based learned image reconstruction methods in medical imaging have been limited to uniform domains, such as pixelated images. If the underlying model is solved on nonuniform meshes, arising from ... 详细信息
来源: 评论
DA-MUSIC: Data-Driven DoA Estimation via deep Augmented MUSIC Algorithm
收藏 引用
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2024年 第2期73卷 2771-2785页
作者: Merkofer, Julian P. Revach, Guy Shlezinger, Nir Routtenberg, Tirza van Sloun, Ruud J. G. Swiss Fed Inst Technol CH-8092 Zurich Switzerland Eindhoven Univ Technol Elect Engn Dept NL-5612 AZ Eindhoven Netherlands Swiss Fed Inst Technol D ITET CH-8092 Zurich Switzerland Ben Gurion Univ Negev Sch ECE IL-8499000 Beer Sheva Israel Princeton Univ ECE Dept Princeton NJ 08540 USA
Direction of arrival (DoA) estimation of multiple signals is pivotal in sensor array signal processing. A popular multi-signal DoA estimation method is the multiple signal classification (MUSIC) algorithm, which enabl... 详细信息
来源: 评论
LoRD-Net: Unfolded deep Detection Network With Low-Resolution Receivers
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2021年 69卷 5651-5664页
作者: Khobahi, Shahin Shlezinger, Nir Soltanalian, Mojtaba Eldar, Yonina C. Univ Illinois ECE Dept Chicago IL 60607 USA Ben Gurion Univ Negev Sch ECE IL-84105 Beer Sheva Israel Weizmann Inst Sci Fac Math & CS IL-7610001 Rehovot Israel
The need to recover high-dimensional signals from their noisy low-resolution quantized measurements is widely encountered in communications and sensing. In this paper, we focus on the extreme case of one-bit quantizer... 详细信息
来源: 评论