咨询与建议

限定检索结果

文献类型

  • 27 篇 期刊文献
  • 18 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 46 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 43 篇 工学
    • 25 篇 电气工程
    • 16 篇 计算机科学与技术...
    • 9 篇 信息与通信工程
    • 6 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
  • 18 篇 医学
    • 11 篇 特种医学
    • 8 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 8 篇 理学
    • 3 篇 物理学
    • 3 篇 地球物理学
    • 1 篇 数学
    • 1 篇 大气科学
    • 1 篇 生物学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 46 篇 model-based deep...
  • 6 篇 deep unfolding
  • 4 篇 deep learning
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 plug-and-play pr...
  • 3 篇 deep equilibrium...
  • 3 篇 monotone operato...
  • 3 篇 deep receivers
  • 2 篇 hyperspectral im...
  • 2 篇 dipole inversion
  • 2 篇 wireless communi...
  • 2 篇 neural networks
  • 2 篇 diffusion mri
  • 2 篇 low-resolution s...
  • 2 篇 one-bit quantiza...
  • 2 篇 wireless communi...
  • 2 篇 regularization b...
  • 2 篇 receivers
  • 2 篇 machine learning

机构

  • 3 篇 zhejiang univ de...
  • 3 篇 univ illinois de...
  • 2 篇 zhejiang univ co...
  • 2 篇 ben gurion univ ...
  • 2 篇 weizmann inst sc...
  • 2 篇 univ iowa dept e...
  • 2 篇 ben gurion univ ...
  • 2 篇 univ florida dep...
  • 2 篇 nanjing univ pos...
  • 2 篇 ben gurion univ ...
  • 2 篇 nanjing univ sci...
  • 1 篇 technion iit fac...
  • 1 篇 washington univ ...
  • 1 篇 alan turing inst...
  • 1 篇 chongqing univ s...
  • 1 篇 dongguk univ dep...
  • 1 篇 washington univ ...
  • 1 篇 texas a&m univ i...
  • 1 篇 jiaxing key lab ...
  • 1 篇 univ texas austi...

作者

  • 9 篇 shlezinger nir
  • 5 篇 hu rui
  • 5 篇 soltanalian mojt...
  • 5 篇 liu huafeng
  • 4 篇 khobahi shahin
  • 4 篇 eldar yonina c.
  • 4 篇 jacob mathews
  • 3 篇 cui jianan
  • 3 篇 xu xiaojian
  • 3 篇 raviv tomer
  • 3 篇 kamilov ulugbek ...
  • 2 篇 gan weijie
  • 2 篇 liu jiaming
  • 2 篇 qian yuntao
  • 2 篇 van sloun ruud j...
  • 2 篇 john maneesh
  • 2 篇 hu yuyang
  • 2 篇 yu chengjin
  • 2 篇 xiong fengchao
  • 2 篇 li chenxu

语言

  • 45 篇 英文
  • 1 篇 其他
检索条件"主题词=Model-Based Deep Learning"
46 条 记 录,以下是41-50 订阅
排序:
STPDNET: SPATIAL-TEMPORAL CONVOLUTIONAL PRIMAL DUAL NETWORK FOR DYNAMIC PET IMAGE RECONSTRUCTION  20
STPDNET: SPATIAL-TEMPORAL CONVOLUTIONAL PRIMAL DUAL NETWORK ...
收藏 引用
20th IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Hu, Rui Cui, Jianan Yu, Chengjin Chen, Yunmei Liu, Huafeng Zhejiang Univ Dept Opt Engn State Key Lab Modern Opt Instrumentat Hangzhou 310027 Peoples R China Univ Florida Dept Math Gainesville FL 32611 USA
Dynamic positron emission tomography (dPET) image reconstruction is extremely challenging due to the limited counts received in individual frame. In this paper, we propose a spatial-temporal convolutional primal dual ... 详细信息
来源: 评论
MONOTONICALLY CONVERGENT REGULARIZATION BY DENOISING  29
MONOTONICALLY CONVERGENT REGULARIZATION BY DENOISING
收藏 引用
IEEE International Conference on Image Processing (ICIP)
作者: Hu, Yuyang Liu, Jiaming Xu, Xiaojian Kamilov, Ulugbek S. Washington Univ St Louis Dept Elect & Syst Engn St Louis MO 63130 USA Washington Univ St Louis Dept Comp Sci & Engn St Louis MO 63130 USA
Regularization by denoising (RED) is a widely-used framework for solving inverse problems by leveraging image denoisers as image priors. Recent work has reported the stateof-the-art performance of RED in a number of i... 详细信息
来源: 评论
Self-Supervised Transmission Waveform learning for Ultrafast Pulse-Echo Ultrasound Imaging with Sparse Reconstruction  32
Self-Supervised Transmission Waveform Learning for Ultrafast...
收藏 引用
32nd European Signal Processing Conference (EUSIPCO)
作者: Cakiroglu, Ozan Perez, Eduardo Roemer, Florian Schiffner, Martin Fraunhofer Inst Nondestruct Testing IZFP Saarbrucken Germany Tech Univ Ilmenau Ilmenau Germany Ruhr Univ Bochum Bochum Germany
Ultrafast pulse-echo ultrasound imaging is performed by recording only one measurement cycle, which insonifies the entire region of interest. It has been shown that mathematical model of the received signal is suitabl... 详细信息
来源: 评论
SPATIAL-SPECTRAL CONVOLUTIONAL SPARSE NEURAL NETWORK FOR HYPERSPECTRAL IMAGE DENOISING
SPATIAL-SPECTRAL CONVOLUTIONAL SPARSE NEURAL NETWORK FOR HYP...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Xiong, Fengchao Ye, Minchao Zhou, Jun Qian, Yuntao Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing Peoples R China China Jiliang Univ Coll Informat Engn Hangzhou Peoples R China Griffith Univ Sch Informat & Commun Technol Nathan Qld Australia Zhejiang Univ Coll Comp Sci Hangzhou Peoples R China
Sparse representation (SR) is a widely accepted hyperspectral image (HSI) denoising model. Because of the curse of dimensionality and the desire to better fit the data, the SR models are typically deployed on small an... 详细信息
来源: 评论
learning an interpretable end-to-end network for real-time acoustic beamforming
收藏 引用
JOURNAL OF SOUND AND VIBRATION 2024年 591卷
作者: Liang, Hao Zhou, Guanxing Tu, Xiaotong Jakobsson, Andreas Ding, Xinghao Huang, Yue Xiamen Univ Sch Informat Xiamen 361005 Peoples R China Xiamen Univ Inst Artificial Intelligence Xiamen 361005 Peoples R China Lund Univ Ctr Math Sci SE-22100 Lund Sweden
Recently, many forms of audio industrial applications, such as sound monitoring and source localization, have begun exploiting smart multi-modal devices equipped with a microphone array. Regrettably, model-based metho... 详细信息
来源: 评论
Dynamic low-count PET image reconstruction using spatio-temporal primal dual network
收藏 引用
PHYSICS IN MEDICINE AND BIOLOGY 2023年 第13期68卷 135015-135015页
作者: Hu, Rui Cui, Jianan Li, Chenxu Yu, Chengjin Chen, Yunmei Liu, Huafeng Zhejiang Univ Dept Opt Engn State Key Lab Modern Opt Instrumentat Hangzhou 310027 Peoples R China Zhejiang Univ Technol Inst Informat Proc & Automat Coll Informat Engn Hangzhou 310001 Peoples R China Univ Florida Dept Math Gainesville FL 32611 USA
Objective. Dynamic positron emission tomography (PET) imaging, which can provide information on dynamic changes in physiological metabolism, is now widely used in clinical diagnosis and cancer treatment. However, the ... 详细信息
来源: 评论