咨询与建议

限定检索结果

文献类型

  • 5 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 7 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7 篇 工学
    • 7 篇 计算机科学与技术...
    • 1 篇 电气工程
  • 2 篇 理学
    • 2 篇 生物学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 7 篇 model-based evol...
  • 2 篇 genetic programm...
  • 2 篇 linkage learning
  • 2 篇 genetic algorith...
  • 2 篇 symbolic regress...
  • 1 篇 parallel algorit...
  • 1 篇 estimation of di...
  • 1 篇 asynchronous alg...
  • 1 篇 deep learning
  • 1 篇 interpretable ma...
  • 1 篇 optimization
  • 1 篇 surrogate modell...
  • 1 篇 brain computer i...
  • 1 篇 motor-imagery
  • 1 篇 optimal mixing
  • 1 篇 coefficient opti...
  • 1 篇 cma-es
  • 1 篇 back-drive
  • 1 篇 estimation-of-di...
  • 1 篇 inverse modellin...

机构

  • 3 篇 ctr wiskunde & i...
  • 2 篇 delft univ techn...
  • 2 篇 leiden univ med ...
  • 1 篇 univ basque coun...
  • 1 篇 southern univ sc...
  • 1 篇 ctr wiskunde & i...
  • 1 篇 univ utrecht utr...
  • 1 篇 univ basque coun...
  • 1 篇 univ surrey dept...
  • 1 篇 univ birmingham ...
  • 1 篇 univ utrecht dep...
  • 1 篇 delft univ techn...

作者

  • 4 篇 bosman peter a. ...
  • 2 篇 santana roberto
  • 2 篇 thierens dirk
  • 2 篇 virgolin marco
  • 2 篇 alderliesten tan...
  • 1 篇 yao xin
  • 1 篇 bouter anton
  • 1 篇 lecuyer anatole
  • 1 篇 koch johannes
  • 1 篇 jin yaochu
  • 1 篇 he cheng
  • 1 篇 dushatskiy arkad...
  • 1 篇 guijt arthur
  • 1 篇 cheng ran
  • 1 篇 garciarena unai
  • 1 篇 mendiburu alexan...
  • 1 篇 legeny jozef
  • 1 篇 bonnet laurent

语言

  • 7 篇 英文
检索条件"主题词=Model-Based Evolutionary Algorithms"
7 条 记 录,以下是1-10 订阅
排序:
model-based evolutionary algorithms: a short survey
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2018年 第4期4卷 283-292页
作者: Cheng, Ran He, Cheng Jin, Yaochu Yao, Xin Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen Key Lab Computat Intelligence Shenzhen 518055 Peoples R China Univ Surrey Dept Comp Sci Guildford GU2 7XH Surrey England Univ Birmingham Sch Comp Sci Ctr Excellence Res Computat Intelligence & Applic Birmingham B15 2TT W Midlands England
The evolutionary algorithms (EAs) are a family of nature-inspired algorithms widely used for solving complex optimization problems. Since the operators (e.g. crossover, mutation, selection) in most traditional EAs are... 详细信息
来源: 评论
Introducing the Use of model-based evolutionary algorithms for EEG-based Motor Imagery Classification  12
Introducing the Use of Model-Based Evolutionary Algorithms f...
收藏 引用
14th International Conference on Genetic and evolutionary Computation Conference (GECCO)
作者: Santana, Roberto Bonnet, Laurent Legeny, Jozef Lecuyer, Anatole Univ Basque Country UPV EHU Intelligent Syst Grp Bilbao Spain
Brain computer interfaces (BCIs) allow the direct human-computer interaction without the need of motor intervention. To properly and efficiently decode brain signals into computer commands the application of machine-l... 详细信息
来源: 评论
Parameterless Gene-Pool Optimal Mixing evolutionary algorithms
收藏 引用
evolutionary COMPUTATION 2024年 第4期32卷 371-397页
作者: Dushatskiy, Arkadiy Virgolin, Marco Bouter, Anton Thierens, Dirk Bosman, Peter A. N. Ctr Wiskunde & Informat Evolutionary Intelligence Grp NL-1098XG Amsterdam Netherlands Univ Utrecht Dept Informat & Comp NL-3584CC Utrecht Netherlands Delft Univ Technol Dept Software Technol NL-2628XE Delft Netherlands
When it comes to solving optimization problems with evolutionary algorithms (EAs) in a reliable and scalable manner, detecting and exploiting linkage information, that is, dependencies between variables, can be key. I... 详细信息
来源: 评论
Coefficient Mutation in the Gene-pool Optimal Mixing evolutionary Algorithm for Symbolic Regression  22
Coefficient Mutation in the Gene-pool Optimal Mixing Evoluti...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Virgolin, Marco Bosman, Peter A. N. Ctr Wiskunde & Informat Amsterdam Netherlands
Currently, the genetic programming version of the gene-pool optimal mixing evolutionary algorithm (GP-GOMEA) is among the top-performing algorithms for symbolic regression (SR). A key strength of GP-GOMEA is its way o... 详细信息
来源: 评论
Envisioning the Benefits of Back-Drive in evolutionary algorithms
Envisioning the Benefits of Back-Drive in Evolutionary Algor...
收藏 引用
IEEE Congress on evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Garciarena, Unai Mendiburu, Alexander Santana, Roberto Univ Basque Country UPV EHU Intelligent Syst Grp Donostia San Sebastian Spain
Among the characteristics of traditional evolutionary algorithms governed by models, memory volatility is one of the most frequent. This is commonly due to the limitations of the models used to guide this kind of algo... 详细信息
来源: 评论
Simultaneous model-based Evolution of Constants and Expression Structure in GP-GOMEA for Symbolic Regression  18th
Simultaneous Model-Based Evolution of Constants and Expressi...
收藏 引用
18th International Conference on Parallel Problem Solving from Nature (PPSN)
作者: Koch, Johannes Alderliesten, Tanja Bosman, Peter A. N. Ctr Wiskunde & Informat Amsterdam Netherlands Delft Univ Technol Delft Netherlands Leiden Univ Med Ctr Leiden Netherlands
Genetic programming (GP) approaches are among the state-of-the-art for symbolic regression, the task of constructing symbolic expressions that fit well with data. To find highly accurate symbolic expressions, both the... 详细信息
来源: 评论
The Impact of Asynchrony on Parallel model-based EAs  23
The Impact of Asynchrony on Parallel Model-Based EAs
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Guijt, Arthur Thierens, Dirk Alderliesten, Tanja Bosman, Peter A. N. Ctr Wiskunde & Informat Amsterdam Netherlands Univ Utrecht Utrecht Netherlands Leiden Univ Med Ctr Leiden Netherlands Delft Univ Technol Delft Netherlands
In a parallel EA one can strictly adhere to the generational clock, and wait for all evaluations in a generation to be done. However, this idle time limits the throughput of the algorithm and wastes computational reso... 详细信息
来源: 评论