咨询与建议

限定检索结果

文献类型

  • 29 篇 期刊文献
  • 19 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 49 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 46 篇 工学
    • 25 篇 电气工程
    • 17 篇 计算机科学与技术...
    • 9 篇 信息与通信工程
    • 7 篇 生物医学工程(可授...
    • 3 篇 电子科学与技术(可...
    • 2 篇 机械工程
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
    • 1 篇 生物工程
  • 19 篇 医学
    • 12 篇 特种医学
    • 9 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 2 篇 医学技术(可授医学...
  • 9 篇 理学
    • 4 篇 物理学
    • 3 篇 地球物理学
    • 1 篇 数学
    • 1 篇 化学
    • 1 篇 大气科学
    • 1 篇 生物学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 49 篇 model-based deep...
  • 7 篇 deep unfolding
  • 4 篇 deep learning
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 plug-and-play pr...
  • 3 篇 deep equilibrium...
  • 3 篇 monotone operato...
  • 3 篇 deep receivers
  • 2 篇 state-space mode...
  • 2 篇 hyperspectral im...
  • 2 篇 dipole inversion
  • 2 篇 wireless communi...
  • 2 篇 neural networks
  • 2 篇 diffusion mri
  • 2 篇 low-resolution s...
  • 2 篇 one-bit quantiza...
  • 2 篇 wireless communi...
  • 2 篇 regularization b...
  • 2 篇 receivers

机构

  • 3 篇 zhejiang univ de...
  • 3 篇 univ illinois de...
  • 2 篇 zhejiang univ co...
  • 2 篇 ben gurion univ ...
  • 2 篇 weizmann inst sc...
  • 2 篇 univ iowa dept e...
  • 2 篇 ben gurion univ ...
  • 2 篇 univ florida dep...
  • 2 篇 nanjing univ pos...
  • 2 篇 ben gurion univ ...
  • 2 篇 nanjing univ sci...
  • 1 篇 technion iit fac...
  • 1 篇 washington univ ...
  • 1 篇 alan turing inst...
  • 1 篇 chongqing univ s...
  • 1 篇 dongguk univ dep...
  • 1 篇 washington univ ...
  • 1 篇 texas a&m univ i...
  • 1 篇 jiaxing key lab ...
  • 1 篇 univ texas austi...

作者

  • 9 篇 shlezinger nir
  • 5 篇 hu rui
  • 5 篇 soltanalian mojt...
  • 5 篇 liu huafeng
  • 4 篇 khobahi shahin
  • 4 篇 eldar yonina c.
  • 4 篇 jacob mathews
  • 3 篇 cui jianan
  • 3 篇 xu xiaojian
  • 3 篇 raviv tomer
  • 3 篇 kamilov ulugbek ...
  • 2 篇 gan weijie
  • 2 篇 liu jiaming
  • 2 篇 qian yuntao
  • 2 篇 van sloun ruud j...
  • 2 篇 john maneesh
  • 2 篇 hu yuyang
  • 2 篇 yu chengjin
  • 2 篇 yalavarthy phane...
  • 2 篇 xiong fengchao

语言

  • 47 篇 英文
  • 2 篇 其他
检索条件"主题词=Model-based Deep Learning"
49 条 记 录,以下是31-40 订阅
排序:
Data Augmentation for deep Receivers
收藏 引用
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 2023年 第11期22卷 8259-8274页
作者: Raviv, Tomer Shlezinger, Nir Ben Gurion Univ Negev Sch Elect & Comp Engn IL-84105 Beer Sheva Israel
deep neural networks (DNNs) allow digital receivers to learn to operate in complex environments. To do so, DNNs should preferably be trained using large labeled data sets with a similar statistical relationship as the... 详细信息
来源: 评论
Markov-based Neural Networks for Heart Sound Segmentation: Using Domain Knowledge in a Principled Way
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2023年 第11期27卷 5357-5368页
作者: Martins, Miguel L. Coimbra, Miguel T. Renna, Francesco Univ Porto Inst Syst & Comp Engn Technol & Sci INESC TEC Fac Sci P-4169007 Porto Portugal
This work considers the problem of segmenting heart sounds into their fundamental components. We unify statistical and data-driven solutions by introducing Markov-based Neural Networks (MNNs), a hybrid end-to-end fram... 详细信息
来源: 评论
ADAPTIVE KALMANNET: DATA-DRIVEN KALMAN FILTER WITH FAST ADAPTATION  49
ADAPTIVE KALMANNET: DATA-DRIVEN KALMAN FILTER WITH FAST ADAP...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Ni, Xiaoyong Revach, Guy Shlezinger, Nir Swiss Fed Inst Technol ITET Zurich Switzerland Ben Gurion Univ Negev Sch ECE Beer Sheva Israel
Combining the classical Kalman filter (KF) with a deep neural network (DNN) enables tracking in partially known state space (SS) models. A major limitation of current DNN-aided designs stems from the need to train the... 详细信息
来源: 评论
LOCAL MONOTONE OPERATOR learning USING NON-MONOTONE OPERATORS: MNM-MOL  21
LOCAL MONOTONE OPERATOR LEARNING USING NON-MONOTONE OPERATOR...
收藏 引用
21st IEEE International Symposium on Biomedical Imaging (ISBI)
作者: John, Maneesh Chand, Jyothi Rikhab Jacob, Mathews Univ Iowa Dept Elect & Comp Engn Iowa City IA USA
model-based deep learning methods, which train convolutional neural network blocks within iterative algorithms in an end-to-end fashion, have been shown to provide state-of-the-art performance in several inverse probl... 详细信息
来源: 评论
Dynamic PET image reconstruction using deep physiology prior
Dynamic PET image reconstruction using deep physiology prior
收藏 引用
Conference on Medical Imaging - Physics of Medical Imaging
作者: Chen, Mengrui Hu, Rui Liu, Huafeng Zhejiang Univ Coll Opt Sci & Engn State Key Lab Extreme Photon & Instrumentat Hangzhou 310027 Zhejiang Peoples R China
Dynamic positron emission tomography (PET) imaging can provide information about metabolic changes over time, and is widely used in clinical diagnosis and cancer treatment. However, the existing deep learning methods ... 详细信息
来源: 评论
NoSENSE: Learned Unrolled Cardiac MRI Reconstruction Without Explicit Sensitivity Maps  14th
NoSENSE: Learned Unrolled Cardiac MRI Reconstruction Without...
收藏 引用
14th International Workshop on Statistical Atlases and Computational modelling of the Heart (STACOM)
作者: Zimmermann, Felix Frederik Kofler, Andreas Physikalisch Tech Bundesanstalt PTB Berlin Germany
We present a novel learned image reconstruction method for accelerated cardiac MRI with multiple receiver coils based on deep convolutional neural networks (CNNs) and algorithm unrolling. In contrast to many existing ... 详细信息
来源: 评论
Self-Supervised Transmission Waveform learning for Ultrafast Pulse-Echo Ultrasound Imaging with Sparse Reconstruction  32
Self-Supervised Transmission Waveform Learning for Ultrafast...
收藏 引用
32nd European Signal Processing Conference (EUSIPCO)
作者: Cakiroglu, Ozan Perez, Eduardo Roemer, Florian Schiffner, Martin Fraunhofer Inst Nondestruct Testing IZFP Saarbrucken Germany Tech Univ Ilmenau Ilmenau Germany Ruhr Univ Bochum Bochum Germany
Ultrafast pulse-echo ultrasound imaging is performed by recording only one measurement cycle, which insonifies the entire region of interest. It has been shown that mathematical model of the received signal is suitabl... 详细信息
来源: 评论
deep UNFOLDING NETWORK WITH PHYSICS-based PRIORS FOR UNDERWATER IMAGE ENHANCEMENT  30
DEEP UNFOLDING NETWORK WITH PHYSICS-BASED PRIORS FOR UNDERWA...
收藏 引用
30th IEEE International Conference on Image Processing (ICIP)
作者: Thuy Thi Pham Truong Thanh Nhat Mai Lee, Chul Dongguk Univ Dept Multimedia Engn Seoul South Korea
We propose an underwater image enhancement algorithm that leverages both model- and learning-based approaches by unfolding an iterative algorithm. We first formulate the underwater image enhancement task as a joint op... 详细信息
来源: 评论
STPDNET: SPATIAL-TEMPORAL CONVOLUTIONAL PRIMAL DUAL NETWORK FOR DYNAMIC PET IMAGE RECONSTRUCTION  20
STPDNET: SPATIAL-TEMPORAL CONVOLUTIONAL PRIMAL DUAL NETWORK ...
收藏 引用
20th IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Hu, Rui Cui, Jianan Yu, Chengjin Chen, Yunmei Liu, Huafeng Zhejiang Univ Dept Opt Engn State Key Lab Modern Opt Instrumentat Hangzhou 310027 Peoples R China Univ Florida Dept Math Gainesville FL 32611 USA
Dynamic positron emission tomography (dPET) image reconstruction is extremely challenging due to the limited counts received in individual frame. In this paper, we propose a spatial-temporal convolutional primal dual ... 详细信息
来源: 评论
learning an interpretable end-to-end network for real-time acoustic beamforming
收藏 引用
JOURNAL OF SOUND AND VIBRATION 2024年 591卷
作者: Liang, Hao Zhou, Guanxing Tu, Xiaotong Jakobsson, Andreas Ding, Xinghao Huang, Yue Xiamen Univ Sch Informat Xiamen 361005 Peoples R China Xiamen Univ Inst Artificial Intelligence Xiamen 361005 Peoples R China Lund Univ Ctr Math Sci SE-22100 Lund Sweden
Recently, many forms of audio industrial applications, such as sound monitoring and source localization, have begun exploiting smart multi-modal devices equipped with a microphone array. Regrettably, model-based metho... 详细信息
来源: 评论