咨询与建议

限定检索结果

文献类型

  • 29 篇 期刊文献
  • 19 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 49 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 46 篇 工学
    • 25 篇 电气工程
    • 17 篇 计算机科学与技术...
    • 9 篇 信息与通信工程
    • 7 篇 生物医学工程(可授...
    • 3 篇 电子科学与技术(可...
    • 2 篇 机械工程
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
    • 1 篇 船舶与海洋工程
    • 1 篇 核科学与技术
    • 1 篇 生物工程
  • 19 篇 医学
    • 12 篇 特种医学
    • 9 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 2 篇 医学技术(可授医学...
  • 9 篇 理学
    • 4 篇 物理学
    • 3 篇 地球物理学
    • 1 篇 数学
    • 1 篇 化学
    • 1 篇 大气科学
    • 1 篇 生物学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 49 篇 model-based deep...
  • 7 篇 deep unfolding
  • 4 篇 deep learning
  • 4 篇 image reconstruc...
  • 4 篇 training
  • 3 篇 plug-and-play pr...
  • 3 篇 deep equilibrium...
  • 3 篇 monotone operato...
  • 3 篇 deep receivers
  • 2 篇 state-space mode...
  • 2 篇 hyperspectral im...
  • 2 篇 dipole inversion
  • 2 篇 wireless communi...
  • 2 篇 neural networks
  • 2 篇 diffusion mri
  • 2 篇 low-resolution s...
  • 2 篇 one-bit quantiza...
  • 2 篇 wireless communi...
  • 2 篇 regularization b...
  • 2 篇 receivers

机构

  • 3 篇 zhejiang univ de...
  • 3 篇 univ illinois de...
  • 2 篇 zhejiang univ co...
  • 2 篇 ben gurion univ ...
  • 2 篇 weizmann inst sc...
  • 2 篇 univ iowa dept e...
  • 2 篇 ben gurion univ ...
  • 2 篇 univ florida dep...
  • 2 篇 nanjing univ pos...
  • 2 篇 ben gurion univ ...
  • 2 篇 nanjing univ sci...
  • 1 篇 technion iit fac...
  • 1 篇 washington univ ...
  • 1 篇 alan turing inst...
  • 1 篇 chongqing univ s...
  • 1 篇 dongguk univ dep...
  • 1 篇 washington univ ...
  • 1 篇 texas a&m univ i...
  • 1 篇 jiaxing key lab ...
  • 1 篇 univ texas austi...

作者

  • 9 篇 shlezinger nir
  • 5 篇 hu rui
  • 5 篇 soltanalian mojt...
  • 5 篇 liu huafeng
  • 4 篇 khobahi shahin
  • 4 篇 eldar yonina c.
  • 4 篇 jacob mathews
  • 3 篇 cui jianan
  • 3 篇 xu xiaojian
  • 3 篇 raviv tomer
  • 3 篇 kamilov ulugbek ...
  • 2 篇 gan weijie
  • 2 篇 liu jiaming
  • 2 篇 qian yuntao
  • 2 篇 van sloun ruud j...
  • 2 篇 john maneesh
  • 2 篇 hu yuyang
  • 2 篇 yu chengjin
  • 2 篇 yalavarthy phane...
  • 2 篇 xiong fengchao

语言

  • 47 篇 英文
  • 2 篇 其他
检索条件"主题词=Model-based Deep Learning"
49 条 记 录,以下是41-50 订阅
排序:
TransEM: Residual Swin-Transformer based Regularized PET Image Reconstruction  25th
TransEM: Residual Swin-Transformer Based Regularized PET Ima...
收藏 引用
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
作者: Hu, Rui Liu, Huafeng Zhejiang Univ Dept Opt Engn State Key Lab Modern Opt Instrumentat Hangzhou 310027 Peoples R China Jiaxing Key Lab Photon Sensing Intelligent Imagin Jiaxing 314000 Peoples R China Zhejiang Univ Jiaxing Res Inst Intelligent Opt & Photon Res Ctr Jiaxing 314000 Peoples R China
Positron emission tomography (PET) image reconstruction is an ill-posed inverse problem and suffers from high level of noise due to limited counts received. Recently deep neural networks especially convolutional neura... 详细信息
来源: 评论
MONOTONICALLY CONVERGENT REGULARIZATION BY DENOISING  29
MONOTONICALLY CONVERGENT REGULARIZATION BY DENOISING
收藏 引用
IEEE International Conference on Image Processing (ICIP)
作者: Hu, Yuyang Liu, Jiaming Xu, Xiaojian Kamilov, Ulugbek S. Washington Univ St Louis Dept Elect & Syst Engn St Louis MO 63130 USA Washington Univ St Louis Dept Comp Sci & Engn St Louis MO 63130 USA
Regularization by denoising (RED) is a widely-used framework for solving inverse problems by leveraging image denoisers as image priors. Recent work has reported the stateof-the-art performance of RED in a number of i... 详细信息
来源: 评论
SPATIAL-SPECTRAL CONVOLUTIONAL SPARSE NEURAL NETWORK FOR HYPERSPECTRAL IMAGE DENOISING
SPATIAL-SPECTRAL CONVOLUTIONAL SPARSE NEURAL NETWORK FOR HYP...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Xiong, Fengchao Ye, Minchao Zhou, Jun Qian, Yuntao Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing Peoples R China China Jiliang Univ Coll Informat Engn Hangzhou Peoples R China Griffith Univ Sch Informat & Commun Technol Nathan Qld Australia Zhejiang Univ Coll Comp Sci Hangzhou Peoples R China
Sparse representation (SR) is a widely accepted hyperspectral image (HSI) denoising model. Because of the curse of dimensionality and the desire to better fit the data, the SR models are typically deployed on small an... 详细信息
来源: 评论
LoRD-Net: Unfolded deep Detection Network With Low-Resolution Receivers
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2021年 69卷 5651-5664页
作者: Khobahi, Shahin Shlezinger, Nir Soltanalian, Mojtaba Eldar, Yonina C. Univ Illinois ECE Dept Chicago IL 60607 USA Ben Gurion Univ Negev Sch ECE IL-84105 Beer Sheva Israel Weizmann Inst Sci Fac Math & CS IL-7610001 Rehovot Israel
The need to recover high-dimensional signals from their noisy low-resolution quantized measurements is widely encountered in communications and sensing. In this paper, we focus on the extreme case of one-bit quantizer... 详细信息
来源: 评论
Graph Convolutional Networks for model-based learning in Nonlinear Inverse Problems
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2021年 7卷 1341-1353页
作者: Herzberg, William Rowe, Daniel B. Hauptmann, Andreas Hamilton, Sarah J. Marquette Univ Dept Math & Stat Sci Milwaukee WI 53233 USA Univ Oulu Res Unit Math Sci Oulu 90570 Finland UCL Dept Comp Sci London WC1E 6BT England
The majority of model-based learned image reconstruction methods in medical imaging have been limited to uniform domains, such as pixelated images. If the underlying model is solved on nonuniform meshes, arising from ... 详细信息
来源: 评论
Dynamic low-count PET image reconstruction using spatio-temporal primal dual network
收藏 引用
PHYSICS IN MEDICINE AND BIOLOGY 2023年 第13期68卷 135015-135015页
作者: Hu, Rui Cui, Jianan Li, Chenxu Yu, Chengjin Chen, Yunmei Liu, Huafeng Zhejiang Univ Dept Opt Engn State Key Lab Modern Opt Instrumentat Hangzhou 310027 Peoples R China Zhejiang Univ Technol Inst Informat Proc & Automat Coll Informat Engn Hangzhou 310001 Peoples R China Univ Florida Dept Math Gainesville FL 32611 USA
Objective. Dynamic positron emission tomography (PET) imaging, which can provide information on dynamic changes in physiological metabolism, is now widely used in clinical diagnosis and cancer treatment. However, the ... 详细信息
来源: 评论
Attentional filtering: Dynamic system state estimation as an attention
收藏 引用
INFORMATION FUSION 2025年 123卷
作者: Lin, Andi Zhang, Wen-An Guo, Lei Zhejiang Univ Technol Coll Informat Engn Hangzhou 310023 Peoples R China Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China
The ability to understand the behavior of dynamic systems is supported by state estimation techniques. Traditional methods for estimating states involve developing a probabilistic paradigm using a generic state-space ... 详细信息
来源: 评论
Dual-channel prior-based deep unfolding with contrastive learning for underwater image enhancement
收藏 引用
Journal of Visual Communication and Image Representation 2025年 111卷
作者: Thuy Thi Pham Truong Thanh Nhat Mai Hansung Yu Chul Lee Department of Multimedia Engineering Dongguk University Seoul 04620 Republic of Korea MoMo Company Ho Chi Minh City 700000 Vietnam FionSystems Inc. Seongnam 13449 Republic of Korea Department of Computer Science and Artificial Intelligence Dongguk University Seoul 04620 Republic of Korea
Underwater image enhancement (UIE) techniques aim to improve the visual quality of underwater images degraded by wavelength-dependent light absorption and scattering. In this work, we propose a deep unfolding approach... 详细信息
来源: 评论
learning SAMPLING AND model-based SIGNAL RECOVERY FOR COMPRESSED SENSING MRI
LEARNING SAMPLING AND MODEL-BASED SIGNAL RECOVERY FOR COMPRE...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Huijben, Iris A. M. Veeling, Bastiaan S. van Sloun, Ruud J. G. Eindhoven Univ Technol Dept Elect Engn Eindhoven Netherlands Univ Amsterdam Dept Comp Sci Amsterdam Netherlands
Compressed sensing (CS) MRI relies on adequate under-sampling of the k-space to accelerate the acquisition without compromising image quality. Consequently, the design of optimal sampling patterns for these k-space co... 详细信息
来源: 评论