咨询与建议

限定检索结果

文献类型

  • 27 篇 期刊文献
  • 2 篇 会议
  • 1 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 31 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 23 篇 理学
    • 19 篇 统计学(可授理学、...
    • 7 篇 数学
    • 4 篇 生物学
    • 2 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 20 篇 工学
    • 14 篇 计算机科学与技术...
    • 3 篇 仪器科学与技术
    • 3 篇 电气工程
    • 3 篇 控制科学与工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 水利工程
    • 1 篇 测绘科学与技术
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 农学
    • 1 篇 农业资源与环境
  • 4 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 公共管理
  • 3 篇 教育学
    • 3 篇 心理学(可授教育学...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学

主题

  • 31 篇 model-based clas...
  • 6 篇 model-based clus...
  • 5 篇 mixture models
  • 5 篇 label noise
  • 3 篇 robust estimatio...
  • 3 篇 em algorithm
  • 3 篇 outliers detecti...
  • 3 篇 classification
  • 3 篇 impartial trimmi...
  • 3 篇 food authenticit...
  • 2 篇 unobserved class...
  • 2 篇 discriminant ana...
  • 2 篇 supervised class...
  • 2 篇 multiple labels
  • 2 篇 finite mixture m...
  • 2 篇 weighted likelih...
  • 1 篇 NOT FOUND
  • 1 篇 antimicrobial re...
  • 1 篇 model management
  • 1 篇 inductive infere...

机构

  • 4 篇 univ guelph dept...
  • 3 篇 univ coll dublin...
  • 3 篇 univ coll dublin...
  • 2 篇 univ milano bico...
  • 1 篇 data reply srl t...
  • 1 篇 sorbonne paris c...
  • 1 篇 us naval res lab...
  • 1 篇 mcmaster univ de...
  • 1 篇 milano bicocca u...
  • 1 篇 lab jean kuntzma...
  • 1 篇 heidelberg univ ...
  • 1 篇 sapienza univ ro...
  • 1 篇 ashtown food res...
  • 1 篇 hungarian acad s...
  • 1 篇 university of gu...
  • 1 篇 mcmaster univ de...
  • 1 篇 univ lyon f-6900...
  • 1 篇 trinity coll dub...
  • 1 篇 univ waterloo de...
  • 1 篇 data fus & neura...

作者

  • 6 篇 mcnicholas paul ...
  • 4 篇 cappozzo andrea
  • 4 篇 murphy thomas br...
  • 3 篇 greselin frances...
  • 2 篇 vrbik irene
  • 2 篇 bouveyron charle...
  • 1 篇 tim huang
  • 1 篇 subedi sanjeena
  • 1 篇 roska t
  • 1 篇 mackay stephen j...
  • 1 篇 verbeke geert
  • 1 篇 fauvel m.
  • 1 篇 forester b
  • 1 篇 ganzberger m
  • 1 篇 kozek t
  • 1 篇 burny claire
  • 1 篇 arthington angel...
  • 1 篇 messelodi s
  • 1 篇 steane michelle ...
  • 1 篇 fuentes claudio

语言

  • 29 篇 英文
  • 2 篇 其他
检索条件"主题词=Model-based classification"
31 条 记 录,以下是1-10 订阅
排序:
model-based classification via mixtures of multivariate t-distributions
收藏 引用
COMPUTATIONAL STATISTICS & DATA ANALYSIS 2011年 第1期55卷 520-529页
作者: Andrews, Jeffrey L. McNicholas, Paul D. Subedi, Sanjeena Univ Guelph Dept Math & Stat Guelph ON N1G 2W1 Canada
A novel model-based classification technique is introduced based on mixtures of multivariate t-distributions. A family of four mixture models is defined by constraining, or not, the covariance matrices and the degrees... 详细信息
来源: 评论
model-based classification of radar images
收藏 引用
IEEE TRANSACTIONS ON INFORMATION THEORY 2000年 第5期46卷 1842-1854页
作者: Chiang, HC Moses, RL Potter, LC Ohio State Univ Dept Elect Engn Columbus OH 43210 USA
A Bayesian approach is presented for model-based classification of images with application to synthetic-aperture radar Posterior probabilities are computed for candidate hypotheses using physical features estimated fr... 详细信息
来源: 评论
model-based classification via Mixtures of Multivariate t-Factor Analyzers
收藏 引用
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION 2012年 第4期41卷 510-523页
作者: Steane, Michelle A. McNicholas, Paul D. Yada, Rickey Y. Univ Guelph Dept Math & Stat Guelph ON N1G 2W1 Canada Univ Guelph Dept Food Sci Guelph ON N1G 2W1 Canada
A model-based classification technique is developed, based on mixtures of multivariate t-factor analyzers. Specifically, two related mixture models are developed and their classification efficacy studied. An AECM algo... 详细信息
来源: 评论
model-based classification using latent Gaussian mixture models
收藏 引用
JOURNAL OF STATISTICAL PLANNING AND INFERENCE 2010年 第5期140卷 1175-1181页
作者: McNicholas, Paul D. Univ Guelph Dept Math & Stat Guelph ON N1G 2W1 Canada
A novel model-based classification technique is introduced based on parsimonious Gaussian mixture models (PGMMs). PGMMs, which were introduced recently as a model-based clustering technique, arise from a generalizatio... 详细信息
来源: 评论
A robust approach to model-based classification based on trimming and constraints Semi-supervised learning in presence of outliers and label noise
收藏 引用
ADVANCES IN DATA ANALYSIS AND classification 2020年 第2期14卷 327-354页
作者: Cappozzo, Andrea Greselin, Francesca Murphy, Thomas Brendan Univ Milano Bicocca Dept Stat & Quantitat Methods Milan Italy Univ Coll Dublin Sch Math & Stat Dublin Ireland Univ Coll Dublin Insight Res Ctr Dublin Ireland
In a standard classification framework a set of trustworthy learning data are employed to build a decision rule, with the final aim of classifying unlabelled units belonging to the test set. Therefore, unreliable labe... 详细信息
来源: 评论
A comparison of model-based and regression classification techniques applied to near infrared spectroscopic data in food authentication studies
收藏 引用
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS 2007年 第2期89卷 102-115页
作者: Toher, Deirdre Downey, Gerard Murphy, Thomas Brendan Trinity Coll Dublin Sch Comp Sci & Stat Dept Stat Dublin 2 Ireland Ashtown Food Res Ctr Dublin 15 Ireland
classification methods can be used to classify samples of unknown type into known types. Many classification methods have been proposed in the chemometrics, statistical and computer science literature. model-based cla... 详细信息
来源: 评论
model-based Clustering and classification Using Mixtures of Multivariate Skewed Power Exponential Distributions
收藏 引用
JOURNAL OF classification 2023年 第1期40卷 145-167页
作者: Dang, Utkarsh J. Gallaugher, Michael P. B. Browne, Ryan P. McNicholas, Paul D. Carleton Univ Dept Hlth Sci Ottawa ON Canada Baylor Univ Dept Stat Sci Waco TX USA Univ Waterloo Dept Stat & Actuarial Sci Waterloo ON Canada McMaster Univ Dept Math & Stat Hamilton ON Canada
Families of mixtures of multivariate power exponential (MPE) distributions have already been introduced and shown to be competitive for cluster analysis in comparison to other mixtures of elliptical distributions, inc... 详细信息
来源: 评论
Stacking model-based Classifiers for Dealing With Multiple Sets of Noisy Labels
收藏 引用
BIOMETRICAL JOURNAL 2025年 第2期67卷 e70042页
作者: Montani, Giulia Cappozzo, Andrea Data Reply srl Turin Italy Univ Cattolica Sacro Cuore Dept Stat Sci Milan Italy
Supervised learning in presence of multiple sets of noisy labels is a challenging task that is receiving increasing interest in the ever-evolving landscape of healthcare analytics. Such an issue arises when multiple a... 详细信息
来源: 评论
Improving model choice in classification: an approach based on clustering of covariance matrices
收藏 引用
STATISTICS AND COMPUTING 2024年 第3期34卷 100-100页
作者: Rodriguez-Vitores, David Matran, Carlos Univ Valladolid Dept Stat & Operat Res Paseo Belen 7 Valladolid 47011 Spain Univ Valladolid IMUVA Paseo Belen 7 Valladolid 47011 Spain
This work introduces a refinement of the Parsimonious model for fitting a Gaussian Mixture. The improvement is based on the consideration of clusters of the involved covariance matrices according to a criterion, such ... 详细信息
来源: 评论
Gaussian mixture models for the classification of high-dimensional vibrational spectroscopy data
收藏 引用
JOURNAL OF CHEMOMETRICS 2010年 第11-12期24卷 719-727页
作者: Jacques, Julien Bouveyron, Charles Girard, Stephane Devos, Olivier Duponchel, Ludovic Ruckebusch, Cyril Univ Lille 1 LASIR CNRS UMR 8516 F-59655 Villeneuve Dascq France Univ Lille 1 Lab Paul Painleve CNRS UMR 8524 F-59655 Villeneuve Dascq France Univ Paris 01 Lab SAMM F-75231 Paris 05 France INRIA Rhone Alpes MISTIS Grenoble France Lab Jean Kuntzmann Grenoble France
In this work, a family of generative Gaussian models designed for the supervised classification of high-dimensional data is presented as well as the associated classification method called High-Dimensional Discriminan... 详细信息
来源: 评论